Math 582 Intro to Set Theory Lecture 21

Kenneth Harris

kaharri@umich.edu

Department of Mathematics University of Michigan

March 15, 2009

Kenneth Harris (Math 582) Math 582 Intro to Set Theory Lecture 21 March 15, 2009 1 / 1

Properties of Ordinal Multiplication

Multiplication on ON

Definition (Ordinal multiplication) For all ordinals β , $\beta \cdot 0 = 0$ $\beta \cdot (\alpha + 1) = \beta \cdot \alpha + \beta$

 $\beta \cdot \alpha = \sup\{\beta \cdot \xi \mid \xi < \alpha\} \quad \text{when } \alpha \text{ is a limit}$

Properties of Ordinal Multiplication

Ordinal Multiplication and Normality

Theorem

If $\alpha > 0$, then the function $(\xi \mapsto (\alpha + \xi))$ is normal.

Proof.

See Lecture 19, slide 5 for the theorem being applied.

^{ICF} Let $\alpha > 0$. The function is continuous by definition (limit clause). It is enough to check the successor clause is order preserving:

$$\alpha \cdot (\beta + 1) = \alpha \cdot \beta + \alpha > \alpha \cdot \beta$$

by the Order Lemma (a) for Lecture 19.

Kenneth Harris (Math 582)	Math 582 Intro to Set Theory Lecture 21	March 15, 2009	4 / 1	
Properties of Ordinal Multiplication				
Order Laws				

Theorem (Order Laws) For all α and β (a) If $\alpha \neq 0$, then $\beta \leq \alpha \cdot \beta$. (b) If $\alpha \neq 0$ and $\beta < \gamma$, then $\alpha \cdot \beta < \alpha \cdot \gamma$. (c) $\alpha, \beta \neq 0 \rightarrow \alpha \cdot \beta \neq 0$. (d) If $\beta < \gamma$, then $\beta \cdot \alpha \leq \gamma \cdot \alpha$.

Proof (a) and (b) are immediate by normality. (c) follows from (a): since $\alpha \neq 0$

 $1 \le \beta \le \alpha \cdot \beta$

(d). By transfinite induction (next slide).

Properties of Ordinal Multiplication Proof

(d). Proof by Transfinite Induction on α . The case $\alpha = 0$ is trivial, and successor follows from the order properties of addition.

If α is a limit, we assume (c) for $\delta < \alpha$.

Theorem (0,1 Laws)	
For all α and β	
(a) $0 \cdot \alpha = \alpha \cdot 0 = 0$.	
(b) $\alpha \cdot 1 = 1 \cdot \alpha = \alpha$.	
(c) If $\alpha \neq 0$ and $\beta > 1$, then $\alpha < \alpha \cdot \beta$	

 137 (a) and (b) are easy transfinite inductions. (c) follows immediately from (b) and the order property (b) from the previous slide:

$$\alpha \neq \mathbf{0} \ \land \ \mathbf{1} < \beta \ \rightarrow \ \alpha \cdot \mathbf{1} < \alpha \cdot \beta$$

Properties of Ordinal Multiplication

Distributivity and Associativity

Theorem (Associativity)

For all α,β,γ

- (a) (Distributivity) $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$
- (b) (Associativity) $\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$

(a). This is an exercise from HW9.

(b). The proof is by transfinite induction on γ . I leave the case of $\gamma = 0$ and successor to you (it is the same as for the natural numbers, and uses Distributivity). I will do the limit case.

Kenneth Harris (Math 582)	Math 582 Intro to Set Theory	Lecture 21 March 15, 20	009 8 / 1
Properties	of Ordinal Multiplication		
Proof			
Proof. If any of α , β or γ are zero, then the equality is $0 = 0$. Assume none are zero. Note that $\alpha \cdot \beta \neq 0$ as well. If γ be a limit. Define			
$F(\xi) = \alpha$	$\cdot \xi \qquad G(\xi) = \beta \cdot \xi$	$H(\xi) = (\alpha \cdot \beta) \cdot \xi.$	- 1
Each function is norr	mal. So,		
$\alpha \cdot (\beta \cdot \gamma) = F(G(\gamma))$	γ))		
$=$ sup{ H	$F(G(\delta)) \mid \delta < \gamma \}$	$F \circ G$ normal, (L.20, s.	11)
$= \sup\{a\}$	$\alpha \cdot (\beta \cdot \delta) \delta < \gamma \}$		

- $= \sup\{(\alpha \cdot \beta) \cdot \delta \mid \delta < \gamma\} \qquad i.h$
- $= \sup\{H(\delta) \mid \delta < \gamma\}$
- $= H(\gamma) = (\alpha \cdot \beta) \cdot \gamma \qquad \qquad H \text{ normal}$

Properties of Ordinal Multiplication

Division Algorithm

The next theorem, the division algorithm, specializes to the ordinary division algorithm in the case of the natural numbers. It plays a central role in the normal form theorem (see H+J, Theorem 6.6.4).

Theorem

If α and β are given with $\beta \neq 0$, then there exist unique γ and δ such that $\alpha = \beta \cdot \gamma + \delta$ and $\delta < \beta$.

^{ICF} Let $F_{\beta}(\gamma) = \beta \cdot \gamma$. Since F_{β} is normal and $F_{\beta}(0) = 0 \le \alpha$, it follows by the Bracket Theorem (L.20, s. 13) that there is a unique γ such that

$$\beta \cdot \gamma \leq \alpha < \beta \cdot (\gamma + 1).$$

IF Let $G_{\beta \cdot \gamma}(\delta) = \beta \cdot \gamma + \delta$. Since $G_{\beta \cdot \gamma}$ is normal and $G_{\beta \cdot \gamma}(0) = \beta \cdot \gamma \leq \alpha$, it follows by the Bracket Theorem that there is a unique δ such that

$$\beta \cdot \gamma + \delta \le \alpha < \beta \cdot \gamma + (\delta + 1) = (\beta \cdot \gamma + \delta) + 1$$

It follow that $\beta \cdot \gamma + \delta = \alpha$.

Since $\alpha < \beta \cdot (\gamma + 1) = \beta \cdot \gamma + \beta$, it follows that $\delta < \beta$. This proves existence.

Properties of Ordinal Multiplication Proof – continued

Suppose γ' and δ' also satisfy the conditions of the Theorem:

$$\alpha = \beta \cdot \gamma' + \delta' \qquad \delta' < \beta.$$

Since $\delta' < \beta$

$$\beta \cdot \gamma' \leq \alpha < \beta \cdot \gamma' + (\delta' + 1) \leq \beta \cdot (\gamma' + 1),$$

so, $\gamma' = \gamma$ by the uniqueness of γ' .

Similarly,

$$\beta \cdot \gamma + \delta' \le \alpha < \beta \cdot \gamma + (\delta' + 1)$$

which implies that $\delta = \delta'$ by the uniqueness of δ .

Kenneth Harris (Math 582)	Math 582 Intro to Set Theory Lecture 21	March 15, 2009	12 / 1	
Properties of Ordinal Exponentiation				
Exponentiation on ON				

```
Definition (Ordinal exponentiation)

For all ordinals \beta,

\beta^{0} = 1
\beta^{\alpha+1} = \beta^{\alpha} \cdot \beta
\beta^{\alpha} = \sup\{\beta^{\xi} | \xi < \alpha\} \quad \text{when } \alpha \text{ is a limit}
```

Properties of Ordinal Exponentiation

Ordinal Exponentiation and Normality

Theorem

If $\alpha > 1$, then the function $(\xi \mapsto (\alpha^{\xi}))$ is normal.

Proof.

See Lecture 19, slide 5 for the theorem being applied.

^{ICF} Let $\alpha > 1$. The function is continuous by definition (limit clause). It is enough to check the successor clause is order preserving:

$$\alpha^{\beta+1} = \alpha^{\beta} \cdot \alpha > \alpha^{\beta},$$

 $\alpha^{\beta} \neq 0$ for all β by easy transfinite induction. The rest follows by the order property for multiplication since $\alpha > 1$.

Kenneth Harris (Math 582)	Math 582 Intro to Set Theory Lecture 21	March 15, 2009 15 / 1	
Properties of Or	dinal Exponentiation		
0,1 Laws			
Theorem (0,1 Laws)		1	
For all α ,			
(a) $0^{lpha} = 0$ if $lpha$ is a suc	cessor.		
(b) $0^{\alpha} = 1$ if $\alpha = 0$ or is	s a limit ordinal.		
(c) $1^{\alpha} = 1$.			
(d) $\alpha^0 = 1$.			
(e) $\alpha^1 = \alpha$.			
(f) If $1 < \alpha, \beta$, then $1 < \alpha$	$< \alpha^{eta}$		
Easy transfinite indu by transfinite induction.	uctions. Note (a) and (b) ca When α is a limit	n be proven together	

$$\mathbf{0}^{\alpha} = \sup\{\mathbf{0}^{\delta} \mid \delta < \alpha\} = \mathbf{1}.$$

(f) follows from (e) together with normality (order preserving).

Properties of Ordinal Exponentiation

Order Laws

Theorem (Order Laws) For all α , (a) If $\alpha > 1$, then $\beta \le \alpha^{\beta}$. (b) If $\alpha > 1$ and $\beta < \gamma$, then $\alpha^{\beta} < \alpha^{\gamma}$. (c) If $\alpha > 1$ and $\beta > 1$, then $\alpha < \alpha^{\beta}$. (d) If $\beta < \gamma$, then $\beta^{\alpha} \le \gamma^{\alpha}$.

 \mathbb{P} (a) and (b) follow by Normality: let $F_{\alpha}(\xi) = \alpha^{\xi}$. Then, by normality

$$\begin{array}{ll} (a) & \beta \leq F_{\alpha}(\beta) \\ (b) & \beta < \gamma \ \rightarrow \ F_{\alpha}(\beta) < F_{\alpha}(\gamma). \end{array}$$

(c) follows from (b).

(d) is an easy induction, as in part (d) on slide 5 for multiplication.

Kenneth Harris (Math 582)	Math 582 Intro to Set Theory Lecture 21	March 15, 2009	17 / 1
Properties of Ordinal Exponentiation			
Exponent Laws			

Theorem (Exponent Laws) For all α, β, γ , (a) $\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma}$. (b) $(\alpha^{\beta})^{\gamma} = \alpha^{(\beta \cdot \gamma)}$.

Proof by transfinite induction. Homework 9 problems.