MATH 582 HOMEWORK 3

WEEK 5

Winter, 2009 Due February 20

Exercise 1. Let (A, <) and (B, \prec) be ordered sets with $A \cap B = \emptyset$. Define \triangleleft on $A \cup B$ as follows: for any $x, y \in A \cup B$ let $x \triangleleft y$ iff either

- (i) $x, y \in A$ and x < y, or
- (ii) $x, y \in B$ and x < y, or
- (iii) $x \in A$ and $y \in B$

(The relation \triangleleft puts everything in A before B, and otherwise respects the ordering < on A and \prec on B.)

Prove.

- (a) $(A \cup B, \triangleleft)$ is an ordered set.
- (b) $(A \cup B, \triangleleft)$ is a totally ordered set, when (A, \triangleleft) and (B, \triangleleft) are totally ordered.
- (c) $(A \cup B, \triangleleft)$ is a well-ordered set, when (A, \triangleleft) and (B, \triangleleft) are wellordered.

Exercise 2. Let (A, <) and (B, \prec) be ordered sets. The lexicographic product on $A \times B$ is the relation \triangleleft on $A \times B$ defined by

$$(a,b) \triangleleft (a',b') \quad \leftrightarrow \quad a < a' \lor (a = a' \land b \prec b')$$

Prove.

- (a) $(A \times B, \triangleleft)$ is an ordered set.
- (b) $(A \times B, \triangleleft)$ is a totally ordered set, when (A, \triangleleft) and (B, \triangleleft) are totally ordered.
- (c) $(A \times B, \triangleleft)$ is a well-ordered set, when (A, \triangleleft) and (B, \triangleleft) are wellordered.

Note. We can view $A \times B$ as two-letter words whose first letter comes from A and whose second letter comes from B. Then \triangleleft is the dictionary order of these two-letter words: use the first letter to order elements, and the second letter to break ties.

Exercise 3. In this exercise you will show that the domain and range of a relation exist, which is independent of the specific definition of "ordered pair". Suppose we have defined "ordered pair" in some way [(x,y)] (as a set), and assume that we can prove for all x, x', y, y'

$$[(x,y)] = [(x',y')] \longrightarrow x = x' \land y = y'.$$

Prove that the following sets exist for all sets R:

$$\{x \mid \exists y \big([(x,y)] \in R \big) \}$$
$$\{y \mid \exists x \big([(x,y)] \in R \big) \}$$

(Hint: use Replacement and Comprehension.)

Exercise 4. Functions f and g are compatible if f(x) = g(x) for all $x \in dom(f) \cap dom(g)$. A family of functions \mathcal{F} is a compatible family of functions if any two functions $f, g \in \mathcal{F}$ are compatible.

Prove.

- (a) Let f, g be functions. Then f and g are compatible iff $f \cup g$ is a function.
- (b) Let \mathcal{F} be a family of functions. Then \mathcal{F} is a compatible family of functions iff $\bigcup \mathcal{F}$ is a function with $dom(\bigcup \mathcal{F}) = \bigcup_{f \in \mathcal{F}} dom(f)$.