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Review: Conditioning Rule and Conjunctions

Conditional probability

Definition (Conditioning Rule)
Let E and F be events.

The conditional probability of E given F is defined by:

P(E |F ) =
P (E ∩ F )

P (F )
.

provided P (F ) > 0.

Note. From now on I will assume P (F ) > 0 when I write P(E |F ).
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Review: Conditioning Rule and Conjunctions

Conjunctions

�We can often compute P (F ) and P(E |F ) easily.
If so, we can compute the conjunction P (E ∩ F ) as well.

Lemma (Multiplication Rule)

For any events E and F (where P (F ) > 0),

P (E ∩ F ) = P (E) · P(F |E)
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Review: Conditioning Rule and Conjunctions

Example

Example
A drawer contains 5 red socks and 3 blue socks.

If you remove the socks at random, what is the probability of
holding a blue pair?

� You could do this by enumerating all the possible combinations in
the sample space for this experiment, but conditioning provides a
simpler method.
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Review: Conditioning Rule and Conjunctions

Example – continued

� 5 red and 3 blue socks.
Consider the two events
Bi : the i th sock picked is blue (i = 1, 2).

We want to determine P (B1 ∩ B2).
Use the multiplication rule,

P (B1 ∩ B2) = P (B1) · P(B2 |B1)

=
3
8
· 2

7
=

3
28

.

Reason: If you choose 1 blue sock then there are 2 blue socks and 7
socks remaining. So,

P(B2 |B1) =
2
7
.
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Partition Rules

Partition Rule

� It is often easier to compute the probability of an event by dividing
the sample space into two disjoint groups. (Compare to Ross, equation
3.3.1, p. 72).

Theorem (Partition Rule)

P (E) = P(E |F ) · P (F ) + P(E |F c) · P (F c)

Proof. Since E ∩ F and E ∩ F c are mutually disjoint

P (E) = P (E ∩ F ) + P (E ∩ F c)

= P(E |F ) · P (F ) + P(E |F c) · P (F c)

The last line is by the Conditioning Rule.
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Partition Rules

Example 1: tests

Example
In a population of individuals a proportion p are subject to a disease
(such as AIDS). A test is available which indicates whether an
individual has the disease (a positive result). No test is perfect though.
Suppose the following:

The probability of positive test when an individual has the disease
is 95%, (So 5% of the time the test fails to indicate the disease – a
false negative.)
The probability of positive test when an individual does not have
the disease is 5% – false positive.

What is the probability that a randomly selected individual is positive?
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Partition Rules

Example 1 – continued

Solution. Let P be the event that the result is positive and D the event
the person has the disease. Then,

P (D) = p P(P |D) = 0.95 P(P |Dc) = 0.05

Use the Partition Rule:

P (P) = P(P |D) · P (D) + P(P |Dc) · P (Dc)

= 0.95p + 0.05(1− p)

= 0.9p + 0.05.

� You can expect alot of positive results, most of which will be false
positives, if the disease is rare (i.e., p is small).
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Partition Rules

Extended Partition Rule

� It is often more convenient to divide a sample space into several
groups. (Compare to Ross, equation 3.3.4, p. 81).

Theorem (Extended Partition Rule)
Let E be some event and suppose F1, F2, . . . , Fn is a collection of
mutually exclusive events, one of which must occur:

n⋃
k=1

Fi = S.

Then,

P (E) =
n∑

k=1

P(E |Fk ) · P (Fk ).
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Partition Rules

Extended Partition Rule

Proof.
We can break the event E into cases (since some one of the events Fk
must occur):

E =
n⋃

k=1

(E ∩ Fk ).

The events E ∩ Fk are mutually exclusive (since the events Fk are).
By the Sum Rule

P (E) =
n∑

k=1

P (E ∩ Fk )

=
n∑

k=1

P(E |Fk ) · P (Fk )

The last line is by the Multiplication Rule.
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Partition Rules

Example 2: coins

Example
You have 3 double-headed coins, 1 double-tailed coin and 5 normal
coins. You select one coin at random and flip it.

What is the probability of heads?
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Partition Rules

Example 2 – continued

Solution. Let D, T , N be the event of choosing a double-headed,
double-tailed and normal coin. Let H be the event that the coin shows
heads.

We are given the following

P (D) =
1
3

P (T ) =
1
9

P (N) =
5
9

P(H |D) = 1 P(H |T ) = 0 P(H |N) =
1
2

.

So,

P (H) = P(H |D) · P (D) + P(H |T ) · P (T ) + P(H |N) · P (N)

= 1 · 1
3

+ 0 · 1
9

+
1
2
· 5

9

=
11
18

.
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Bayes’ Rule

Converting conditional probabilities

� The following rule is the ♥ of Bayes’ Rule.

Theorem (Rule for Converting Conditional Probabilities)
Let E and H be events.

Then
P(H |E) =

P(E |H) · P (H)

P (E)

Proof. Apply the Conditioning Rule twice

P(H |E) =
P (E ∩ H)

P (E)

=
P(E |H) · P (H)

P (E)
.
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Bayes’ Rule

Bayes’ Rule

� Bayes’ Rule is one of the most important in all probability.

Theorem (Bayes’ Rule)

P(H |E) =
P(E |H) · P (H)

P(E |H) · P (H) + P(E |Hc) · P (Hc)

Proof. By the Partitioning Rule

P (E) = P(E |H) · P (H) + P(E |Hc) · P (Hc)

Plug this into the Rule for Converting Conditional Probabilities

P(H |E) =
P(E |H) · P (H)

P (E)

Kenneth Harris (Math 425) Math 425 Introduction to Probability Lecture 9 January 28, 2009 17 / 33

Bayes’ Rule

Example 1 – false positives

Example
In a population of individuals a proportion p are subject to a disease:

The probability of positive test when an individual has the disease
is 95%, (The cases where the test fails to indicate the disease is
called a false negative.)
The probability of positive test when an individual does not have
the disease is 5%. (This is called a false positive).

Should we implement universal (or random) testing?
That is, should we be confident a positive test result indicates the

disease when we test everyone?
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Bayes’ Rule

Example 1 – continued

Solution. Let D be the event of having a disease and R be the event
of a positive result.

We are given

P (D) = p P(R |D) = 0.95 P(R |Dc) = 0.05 P (R) = 0.9p + 0.05

(We computed the last in Example 1 of the previous section.)

� You want to know P(D |R). Use Bayes’ Rule

P(D |R) =
P(R |D)P (D)

P (R)

=
0.95p

0.9p + 0.05
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Bayes’ Rule

Example 1 – continued

� D: disease, R: positive test result

P(D |R) =
0.95p

0.9p + 0.05

� If the disease is rare: p = 0.006 (about the rate of AIDS in the US).
Then

P(D |R) ≈ 0.1

90% of positive cases will be false positives.

� If the disease is common: p = 0.1. Then

P(D |R) ≈ 0.69

Two-thirds of positives are now people with the disease.
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Bayes’ Rule

Extended Bayes Rule

� The extended version of Bayes’ Theorem just applies the Extended
Partition Rule to the Rule for Converting Conditional Probabilities.
(See Ross Proposition 3.1, p. 81.)

Theorem (Extended Bayes’ Rule)
Let E be some event and suppose H1, H2, . . . , Hn is a collection of
mutually exclusive events, one of which must occur:

n⋃
k=1

Hk = S.

Then,

P(Hi |E) =
P(E |Hi) · P (Hi)∑n

k=1 P(E |Hk ) · P (Hk )
.
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Bayes’ Rule

Example 3: An urn problem

Example
An urn contains two balls, which have been randomly chosen to be
either red or blue. We perform the following experiment to determine
the composition of the urn.

1 Select a ball and record its color.
2 Replace the ball in the urn.
3 Mix the contents of the urn well.

Suppose we perform this experiment twice, and each time get a red
ball.

What is the most likely composition of the urn?
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Bayes’ Rule

Example 3 – continued

Solution. Prior to performing the experiment we have three
hypotheses about the urn:

D: the balls in the urn have different colors,
R: both balls in the urn are red,
B: both balls in the urn are blue.

Since the balls were randomly chosen to be placed in the urn, we have
the following probabilities (prior to conducting the experiment):

P (D) =
1
2

P (R) = P (B) =
1
4

.

� Our experiment produced the following outcome:
R2: Two red balls are drawn.

The likelihood of this event given each hypothesis

P(R2 |D) =
1
4

P(R2 |R) = 1 P(R2 |B) = 0
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Bayes’ Rule

Example 3 – continued

� Use the Partition Rule:

P (R2) = P(R2 |D)P (D) + P(R2 |R)P (R) + P(R2 |B)P (B)

=
1
4
· 1

2
+ 1 · 1

4
+ 0 · 1

4
=

3
8

� Use Bayes’ Rule to recompute the probability of each hypothesis:

P(D |R2) =
P(R2 |D) · P (D)

P (R2)
=

1
8
3
8

=
1
3

P(R |R2) = =
P(R2 |R) · P (R)

P (R2)
=

1
4
3
8

=
2
3

P(B |R2) =
P(R2 |B) · P (B)

P (R2)
=

0
3
8

= 0

� The most likely explanation is that the balls in the urn are both red.
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Conditional probabilities are probabilities

Conditional probabilities are probabilities

� It is useful to know that conditional probabilities obey the probability
axioms. (See Ross, Proposition 3.5.1, p. 102)

Theorem
Let F be any event with P (F ) > 0. Then, the function P(· |F ) on the
event space S is a probability function.
That is, P(· |F ) satisfies the probability axioms.

1 0 ≤ P(E |F ) ≤ 1 for all events E,
2 P(S |F ) = 1,
3 If E1 and E2 are mutually exclusive events, then

P(E1 ∪ E2 |F ) = P(E1 |F ) + P(E2 |F )
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Conditional probabilities are probabilities

Proof

For any event F with P (F ) > 0:
À Since E ∩ F ⊆ F ,

0 ≤ P (E ∩ F )

P (F )
= P(E |F ) ≤ 1.

Á

P(S |F ) =
P (S ∩ F )

P (F )
=

P (F )

P (F )
= 1

Â If E1, E2 are mutually exclusive, then so is E1 ∩ F and E2 ∩ F .
By the distributive law

(E1 ∪ E2) ∩ F = (E1 ∩ F ) ∪ (E2 ∩ F )

So,

P(E1 ∪ E2 |F ) =
P (E1 ∩ F ) + P (E2 ∩ F )

P (F )

= P(E1 |F ) + P(E1 |F )
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Conditional probabilities are probabilities

Example: Cesarian sections

Example

98% of all babies survive delivery. However, 15% of all deliveries
involve Cesarian (C) sections, and then the survival rate drops to 96%.

If a randomly chosen pregnant woman does not have a C section,
then what is the probability that the baby survives?

� Let B be the event that the baby survives and C the event that a C
section is performed.

We want to compute P(B |Cc)
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Conditional probabilities are probabilities

Example – continued
�We are given the following data

P (B) = 0.98 P (C) = 0.15 P(B |C) = 0.96.

� By converting conditional probabilities

P(B |Cc) =
P(Cc |B) · P (B)

P (Cc)

The right-side can be computed by converting again

P(C |B) =
P(B |C) · P (C)

P (B)
=

0.96 · 0.15
0.98

= 0.1469

P(Cc |B) = 1− P(C |B) = 0.8531

� The baby’s probability of surviving when no C section is performed:

P(B |Cc) =
0.8531 · 0.98

0.85
= 0.9835.
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Conditional probabilities are probabilities

Example: prostate cancer

Example
Prostate cancer is a common type of cancer found in men. One test for
prostate cancer measures the level of a protein PSA (prostate specific
antigen) produced only by the prostate gland. The test is notoriously
unreliable though.

� The probability that a noncancerous man will have elevated PSA is
13.5%, with this probability increasing to 26.8% if the man does have
cancer.

� Suppose a doctor believes that a certain patient has probability p of
having prostrate cancer, before testing PSA levels.
(a) What is the probability of his having cancer if he has elevated PSA

levels?
(b) What is the probability of his having cancer if he does not have

elevated PSA levels?

Kenneth Harris (Math 425) Math 425 Introduction to Probability Lecture 9 January 28, 2009 30 / 33

Conditional probabilities are probabilities

Example – continued

� Let E be the event of having an elevated PSA and H be the
hypothesis the patient has cancer.
We are given the following

P (H) = p P(E |H) = 0.268 P(E |Hc) = 0.135.

We want to compute (a) P(H |E) and (b) P(H |Ec).
� Use Bayes’ Rule to compute:

(a) : P(H |E) =
P(E |H) · P (H)

P (E)

(b) : P(H |Ec) =
P(Ec |H) · P (H)

P (Ec)

We need only compute P (E). Here we use the Partition Rule:

P (E) = P(E |H) · P (H) + P(E |Hc) · P (Hc)

= 0.268 · p + 0.135 · (1− p) = 0.135 + 0.133p
P (Ec) = 1− P (E) = 0.865− 0.133p
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Conditional probabilities are probabilities

Example – continued

P (E) = 0.135 + 0.133p P (Ec) = 0.865− 0.133p

(a) : P(H |E) =
P(E |H) · P (H)

P (E)
=

0.268p
0.135 + 0.133p

(b) : P(H |Ec) =
P(Ec |H) · P (H)

P (Ec)
=

(1− P(E |H)) · P (H)

P (Ec)

=
0.732p

0.865− 0.133p
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Conditional probabilities are probabilities

Example – completed

P(H |E) =
0.268p

0.135 + 0.133p
P(H |Ec) =

0.732p
0.865− 0.133p

� If the doctor is confident the patient has cancer: p = 0.75.

P(H |E) = 0.8562
P(H |Ec) = 0.7174

� If the doctor is riding the fence: p = 0.5.

P(H |E) = 0.6650
P(H |Ec) = 0.4584

� Testing PSA levels is not definitive on its own.
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