	Conditional Probability		
Math 425 Introduction to Probability Lecture 8	 Very few experiments amount to just one action with random outcomes. Sometimes conditions change before the experiment is completed 		
Kenneth Harris kaharri@umich.edu	 Some experiments have a more complicated structure, in which some partial results are known before the experiment is completed. 		
January 26, 2009	We need a rule for recomputing probabilities when the conditions of an experiment change. This new rule is call the Conditioning Rule.		
Kenneth Harris (Math 425) Math 425 Introduction to Probability Lecture & January 26, 2009 1 /	1 Kenneth Harris (Math 425) Math 425 Introduction to Probability Lecture & January 26, 2009 3 / 1		
Conditional Probability	Conditional Probability		
Example 1	Example 2: Kidney stones		
Example You are about to roll a red and blue die. What is the probability that the red die is larger?	Example Kidney stones are either small (< 2 cm diameter) or large (> 2 cm diameter). Here are the outcomes of one treatment:		
$\mathbf{P}\left(red larger ight) =rac{15}{36}.$	Size Outcomes		
The blue die is first rolled and shows 5. What is the probability that the red die is larger?	success (C) failure total small 315 42 357 large (L) 247 96 343		

$$\mathbf{P}(redlarger) = \frac{1}{6}$$

Math 425 Introduction to Probability Lecture 8

January 26, 2009 4 / 1

total

_

562

138

700

_

Conditional Probability

Conditional Probability

Example 2: Kidney stones

For a patient picked at random from the 700 patients

$$\mathbf{P}\left(L\right)=\frac{343}{700}$$

Prove the probability of success is

$$\mathbf{P}(C)=\frac{562}{700}\approx 0.8.$$

For a patient picked at random, among those with large stones, the probability of success is

$$\frac{247}{343}\approx 0.72.$$

Math 425 Introduction to Probability Lecture 8

Notation

^{III} We introduce a notation to make explicit the new conditions:

$$P(C \mid L) \approx 0.72$$

means the probability of C (success) given L (large stones).

Suppose we select a patient at random, among those with successful treatments, to determine if their stones were large.

$$\mathsf{P}(L \mid C) = \frac{247}{562} \approx 0.44$$

P(L | C) is the conditional probability of *L* (large stones) given *C* (success).

Math 425 Introduction to Probability Lecture 8

```
January 26, 2009 7 / 1
```

Conditioning Rule

Conditional probability

Kenneth Harris (Math 425)

Definition

Let *E* and *F* be events.

The conditional probability of *E* given *F* is defined by:

$$\mathbf{P}(E \mid F) = \frac{\mathbf{P}(E \cap F)}{\mathbf{P}(F)}.$$

provided $\mathbf{P}(F) > 0$.

Conditioning Rule

Conditional probability – picture

Conditional probability shrinks the sample space *S* to an event *F*:

$$\mathbf{P}(E \mid F) = \frac{\mathbf{P}(E \cap F)}{\mathbf{P}(F)}$$

January 26, 2009

6/1

Conditioning Rule

Example 1 - revisited

Let R be the event that the red die is bigger, and B be the event that the blue die shows 5. According to the rule,

$$\mathbf{P}(R \mid B) = \frac{\mathbf{P}(R \cap B) = \frac{1}{36}}{\mathbf{P}(B) = \frac{1}{6}} \\
= \frac{1}{6}$$

Math 425 Introduction to Probability Lecture 8

Note that $R \cap B$ has one outcome: (5, 6).

Example 2 – revisited

Size	Outcomes		
small large (L) total	success (C) 315 247 562	failure 42 96 138	total 357 343 700

Real According to the rule,

Kenneth Harris (Math 425)

$$\mathbf{P}(C \mid L) = \frac{\mathbf{P}(C \cap L) = \frac{247}{700}}{\mathbf{P}(L) = \frac{343}{700}} \\
= \frac{247}{343}$$

Math 425 Introduction to Probability Lecture 8

Conditioning Rule

January 26, 2009 12 / 1

Conditioning Rule

Example 3

Kenneth Harris (Math 425)

Example

A fair coin is flipped three times. Consider the events

• A: the first flip is heads.

• *B*: there are exactly two heads overall.

Then,

- $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$ $A = \{HHH, HHT, HTH, HTT\}$ $B = \{HHT, HTH, THH\}$
- $A \cap B = \{HHT, HTH\}.$

Apply the conditioning rule to compute,

$$\mathbf{P}(A | B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)} = \frac{2}{3}$$
 $\mathbf{P}(B | A) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(A)} = \frac{2}{4}$

January 26, 2009

11/1

Example 4

Example

A box contains a double-headed coin, a double-tailed coin and a conventional coin. One coin is picked at random, and shows heads. What is the probability that it is the double-headed coin?

2 Warning. The following reasoning is incorrect:

 Since the coin shows heads, it is either double-headed or conventional. Since the coin was picked at random, these are equally likely, so the probability is ¹/₂.

This is wrong!!

Conditioning Rule

Example 4 – continued

^{ICF} Let the sample space be the 6 possible faces on the three coins. Consider the events

- H: coin shows heads,
- *D*: coin is double-headed.

Since 3 faces yield H,

Kenneth Harris (Math 425)

$$\mathbf{P}(H) = \frac{1}{2}$$
 $\mathbf{P}(H \cap D) = \frac{1}{3}$

Apply the conditioning rule,

$$\mathbf{P}(D \mid H) = \frac{\mathbf{P}(H \cap D)}{\mathbf{P}(H)} = \frac{2}{3}.$$

Math 425 Introduction to Probability Lecture 8

Example 4 – Sample space

Consider the sample space, where the outcomes are H, T and I (double-tailed), II (double-headed) and III (Normal):

 $S = \{(I, T_1), (I, T_2), (II, H_1), (II, H_2), (III, H_1), (III, T_2)\}$

All outcomes are equiprobable.

 $^{\mbox{\tiny MP}}$ After we see a heads, the sample space is reduced:

 $\{(I, T_1), (I, T_2), (II, H_1), (II, H_2), (III, H_1), (III, T_2)\}$

The outcomes remaining are still equiprobable.

 $\mathbf{P}(\mathbf{D} \mid H) = \frac{2}{3}.$

Math 425 Introduction to Probability Lecture 8

January 26, 2009 16 / 1

Conditioning Rule

Example 4 – Simulation

I ran a simulation of Example 4 in Mathematica.

- Choose a coin at random and simulate a toss.
- If Tails shows, go on to next trial.
- If Heads shows, record which coin was chosen.
- After 10,000 trials, output

 $\frac{|D \cap H|}{|H|}$

- Prime I ran the simulation 1000 times (our calculation was 0.666667):
 - Mean: 0.667024 (of ratios)
 - Maximum ratio: 0.688831
 - Minimum ratio: 0.645387
 - Standard Deviation: 0.006673

You can be 95% confident that the correct probability is within two decimal places of the mean.

January 26, 2009

15/1

Conjunctions

Kenneth Harris (Math 425)

We can often compute $\mathbf{P}(F)$ and $\mathbf{P}(E | F)$ easily. If so, we can compute the conjunction $\mathbf{P}(E \cap F)$ as well.

Multiplication Rule

Lemma (Multiplication Rule)

For any events E and F (where P(F) > 0),

$$\boldsymbol{P}(E \cap F) = \boldsymbol{P}(E) \cdot \boldsymbol{P}(F \mid E)$$

Example 5

Example

A drawer contains 5 red socks and 3 blue socks.

If you remove the socks at random, what is the probability of holding a blue pair?

You could do this by enumerating all the possible combinations in the sample space for this experiment, but conditioning provides a simpler method.

Math 425 Introduction to Probability Lecture 8

Example 5 – continued

¹²⁷ 5 red and 3 blue socks.

Consider the two events

• B_i : the *i*th sock picked is blue (i = 1, 2).

We want to determine $\mathbf{P}(B_1 \cap B_2)$.

Use the multiplication rule,

$$\mathbf{P}(B_1 \cap B_2) = \mathbf{P}(B_1) \cdot \mathbf{P}(B_2 | B_1) \\
= \frac{3}{8} \cdot \frac{2}{7} = \frac{3}{28}.$$

Reason: If you choose 1 blue sock then there are 2 blue socks and 7 socks remaining. So,

 $\mathbf{P}(B_2 \mid B_1) = \frac{2}{7}.$

Math 425 Introduction to Probability Lecture & January 2

January 26, 2009 21 / 1

Multiplication Rule

Kenneth Harris (Math 425)

Multiplication Rule for 3 events

We can extend the Multiplication Rule to three events.

Lemma

For any events E, F, G (provided $P(E \cap F \cap G) > 0$)

$$\boldsymbol{P}(E \cap F \cap G) = \boldsymbol{P}(E) \cdot \boldsymbol{P}(F \mid E) \cdot \boldsymbol{P}(G \mid E \cap F)$$

Proof. Use the Mutiplication Rule twice,

$$\mathbf{P}(E \cap F \cap G) = \mathbf{P}(E \cap F) \cdot \mathbf{P}(G | E \cap F)$$

= $\mathbf{P}(E) \cdot \mathbf{P}(F | E) \cdot \mathbf{P}(G | E \cap F)$

We need **P** ($E \cap F \cap G$) \neq 0 to ensure the conditional probabilities exist.

Example 6

Kenneth Harris (Math 425)

Example

An urn is filled with 6 red balls, 5 blue balls, and 4 green balls. Three balls chosen at random are removed from the urn.

What is the probability that the balls are of the same color?

¹²⁷ We are interested in the events (where i = 1, 2, 3)

Multiplication Rule

- *R_i*: *i*th ball drawn is red,
- *B_i*: *i*th ball drawn is blue,
- *G_i*: *i*th ball drawn is green.
- C: three balls are the same color.

January 26, 2009

20 / 1

Multiplication Rule

Example 6 – continued

Irn: 6 red, 5 blue, and 4 green. Use the Multiplication Rule,

$$\mathbf{P}(R_1 \cap R_2 \cap R_3) = \mathbf{P}(R_1) \cdot \mathbf{P}(R_2 | R_1) \cdot \mathbf{P}(R_3 | R_1 \cap R_2) \\ = \frac{6}{15} \cdot \frac{5}{14} \cdot \frac{4}{13} = \frac{4}{91}$$

$$\mathbf{P}(B_1 \cap B_2 \cap B_3) = \mathbf{P}(B_1) \cdot \mathbf{P}(B_2 | B_1) \cdot \mathbf{P}(B_3 | B_1 \cap B_2) \\ = \frac{5}{15} \cdot \frac{4}{14} \cdot \frac{3}{13} = \frac{2}{91}$$

$$\begin{array}{lll} {\bf P} \left(G_1 \cap G_2 \cap G_3 \right) & = & {\bf P} \left(G_1 \right) \cdot {\bf P} (G_2 \mid G_1) \cdot {\bf P} (G_3 \mid G_1 \cap G_2) \\ & = & \frac{4}{15} \cdot \frac{3}{14} \cdot \frac{2}{13} = \frac{4}{455} \end{array}$$

Since these events are mutually exclusive,

$$\mathbf{P}(C) = \frac{4}{91} + \frac{2}{91} + \frac{4}{455} = \frac{34}{455} \approx 0.0747.$$

Math 425 Introduction to Probability Lecture 8

Multiplication Rule

General multiplication Rule

The Multiplication rule is the probabilistic version of the product rule for counting.

Theorem (Generalized Multiplication Rule)

Let E_1, E_2, \ldots, E_n be any events such that

$$\boldsymbol{P}(E_1 \cap E_2 \cap \cdots \cap E_n) > 0.$$

Then

$$\boldsymbol{P}(E_1 \cap E_2 \cap \ldots \cap E_n) = \boldsymbol{P}(E_1) \cdot \boldsymbol{P}(E_2 \mid E_1) \cdot \boldsymbol{P}(E_3 \mid E_1 \cap E_2) \cdots \cdots \boldsymbol{P}(E_n \mid E_1 \cap E_2 \cap \ldots \cap E_{n-1}).$$

Math 425 Introduction to Probability Lecture 8

(See Ross p. 71.)

Kenneth Harris (Math 425)

Kenneth Harris (Math 425)

Multiplication Rule

Example 7

Example

In Pick-Six Lottery: A person purchases a ticket, and can choose 6 distinct numbers in the set $\{1, 2, 3, \dots, 49\}$.

Later a Lottery Machine picks 6 distinct numbers at random in the set $\{1, 2, 3, \ldots, 49\}$.

A winning ticket is one which matches the six numbers chosen by the Machine (in any order of selection).

What are the odds of winning with one ticket?

Example 7 – solution

Solution. We solved this before (Lecture 5) by counting using the Product Rule for counting. We conditionalize here.

Multiplication Rule

^{KS} Let E_i be the event that there are *i* matches. We want to compute

$$\mathbf{P}(E_6) = \mathbf{P}(E_1 \cap E_2 \cap \ldots \cap E_6) \\
= \mathbf{P}(E_1) \cdot \mathbf{P}(E_2 \mid E_1) \cdots \mathbf{P}(E_6 \mid E_1 \cap \ldots \cap E_5) \\
= \frac{6}{49} \cdot \frac{5}{48} \cdot \frac{4}{47} \cdot \frac{3}{46} \cdot \frac{2}{45} \cdot \frac{1}{44} \\
= \frac{1}{13,983,816}$$

January 26, 2009

24 / 1

January 26, 2009

25 / 1