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Example: Coin tossing

Example – continued

� Consider a Bernoulli trials process with IID indicator variables
X1,X2, . . . denoting whether the trial was a success or failure. Suppose
the probability of success is p. So,

E [Xi ] = p Var(Xi) = p(1− p).

� Let An = X1+...+Xn
n be the sample average over n trials.

E
[
An
]

= p Var
(
An
)

=
p(1− p)

n
.

� By Chebyshev’s inequality, for any ε > 0

P
{∣∣An − p

∣∣ ≥ ε} ≤ p(1− p)

nε2 .
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Example: Coin tossing

Example – continued

Example – continued. The variance σ2 = p(1− p) has a maximum
value of 1

4 achieved at p = 1
2 :

p=
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2
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Plugging back into Chebyshev gives us a bound on the deviation of the
sample average from the mean:

P
{∣∣An − p

∣∣ ≥ ε} ≤ p(1− p)

nε2 ≤ 1
4nε2 .
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Example: Coin tossing

Example

Example
We have two coins: one is fair and the other produces heads with
probability 3/4. One coin is picked at random. How many tosses
suffice for us to be 95 percent sure of which coin we had?

� To make this problem more concrete: if the proportion of heads is
less than 0.625, then we will guess the coin was fair; otherwise, if the
proportion of heads is greater than 0.625 we will guess the biased coin.

How many tosses will suffice for 95 percent certainty that the
generated sample average will not deviate by more than ε = 0.125
from its mean?
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Example: Coin tossing

Example – continued

� By Chebyshev’s inequality:

P
{∣∣An − p

∣∣ ≥ ε} ≤ 1
4nε2 .

�We want to n large enough so that we have only 5% error:

1
4nε2 ≤ 0.05

equivalently,

n ≥ 1
4(0.05)ε2 =

5
ε2

�We now have a bound on the number of trials needed without
needing to know the mean or the variance.
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Example: Coin tossing

Example – continued

� For ε = 0.125 choose n so that

n ≥ 5
(0.125)2 = 320

� By tossing the coin n ≥ 320 times we can be 95% certain the
sample average is within 0.125 of the true bias p of the coin to heads:

P
{∣∣An − p

∣∣ ≥ 0.125
}
≤ 0.05

� Toss the coin 320 times and count heads.
If fewer than 200 heads appear guess the fair coin.
If more than 200 heads appear guess the biases coin.
If exactly 200 heads appears, then laugh at your (bad?) luck.

You can be 95 percent certain you chose the right coin.
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Example: Coin tossing

Degree of Certainty vs. Number of Trials

� To achieve certainty p that we are within ε = 0.125 of the mean
requires n trials, where

n ≥ 1
4(1− p)(0.125)2

Degree of Certainty Number of Trials
50% 32
75% 64
90% 160
95% 320
99% 1600

99.9% 16,000
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Central Limit Theorem

Sums of Random Variables
� Let X1,X2, . . . be IID (independent and identically distributed) random
variables with a common mean µ and variance σ2.

Let Sn = X1 + X2 + . . .+ Xn, so the statistics for Sn are

E [Sn] = nµ Var(Sn) = nσ2 StDev(Sn) =
√

nσ
So Sn is tending to shift to the right and flatten-out as n→∞.
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Central Limit Theorem

Standardization

�We standardize the sums Sn to guarantee they have the same
mean and variance.

Definition
Let X1,X2, . . . be IID random variables with a common mean µ and
variance σ2. Let Sn = X1 + X2 + . . .+ Xn.

The standardization of Sn is the random variable

S∗n =
Sn − nµ√

nσ

Proposition
The statistics of the standardization S∗n of Sn are

E [S∗n] = 0 Var(S∗n) = 1 for any n.
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Central Limit Theorem

Proof of Proposition

� Let X1,X2, . . . be IID random variables with a common mean µ and
variance σ2. Let Sn = X1 + X2 + . . .+ Xn, so that the statistics of Sn are

E [Sn] = nµ Var(Sn) = nσ2

� The standardization S∗n is defined as

S∗n =
Sn − nµ√

nσ

so its statistics are

E [S∗n] =
E [Sn]− nµ√

nσ
= 0

Var(S∗n) = Var
(Sn − nµ√

nσ

)
=

Var(Sn)

nσ2 = 1.
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Central Limit Theorem

Central Limit Theorem

Theorem (Central Limit Theorem, CLT)
Let X1,X2, . . . be a sequence of IID random variables having mean µ
and variance σ2. Let Sn = X1 + X2 + . . .+ Xn and S∗n be its
standardization

S∗n =
Sn − nµ√

nσ

� Then the distribution of the random variable S∗n tends to the
standard normal distribution as n→∞.

That is, for any −∞ < a <∞

P {S∗n ≤ a} −→ Φ(a) =
1√
2π

∫ a

−∞
e−x2/2 dx as n→∞.
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Central Limit Theorem

Convergence of the Central Limit Theorem

� The CLT only states that for each a

P {S∗n ≤ a} −→ Φ(a),

where Φ(a) is the standard normal distribution.
CLT leaves open a couple important issues

1 How large n must be for Φ(a) to be close to P {S∗n ≤ a},
2 Is there a single n which works for all a; or, will n vary with each a?

� It would be very BAD if it turned-out n was usually very large, or
even if the tightness of the approximation for a choice of n depended
on a.
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Central Limit Theorem

Convergence of the Central Limit Theorem

� Fortunately, this does not happen in MOST circumstances. The
following result states that the convergence in CLT is on the order of

1√
n independently of a.

�The Berry-Esseen Theorem states
If X1,X2, . . . are IID random variables with finite mean µ, variance
σ2, and third moment E [|Xi |3], then there is a constant C (which
does not depend on a or n) such that for any real a and integer n

∣∣P {S∗n ≤ a} − Φ(a)
∣∣ ≤ C√

n
.

� The rule of thumb is that the central limit theorem provides a good
approximation when n ≥ 30.
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Central Limit Theorem

Binomial Distribution – p = 0.5

� Central Limit Theorem for Bernoulli random variable with p = 0.5.

æ æ

n=1

-4 -2 2 4

0.1

0.2

0.3

0.4

æ

æ

æ æ

æ

æ

n=5

-4 -2 2 4

0.1

0.2

0.3

0.4

ææææ
æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ
ææææ

n=25

-4 -2 2 4

0.1

0.2

0.3

0.4

æææææææ
æ

æ

æ

æ

æ

æ

æææ

æ

æ

æ

æ

æ
æ

æææææææ

n=50

-4 -2 2 4

0.1

0.2

0.3

0.4

Kenneth Harris (Math 425) Math 425 Intro to Probability Lecture 37 April 18, 2009 16 / 1

Central Limit Theorem

Binomial Distribution – p = 0.1

� Central Limit Theorem for Bernoulli random variable with p = 0.1.
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Central Limit Theorem

Arbitrary Discrete Distribution
� Central Limit Theorem for an arbitrary discrete distribution
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Central Limit Theorem

Arbitrary Discrete Distribution
� Central Limit Theorem for an arbitrary discrete distribution
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Central Limit Theorem

Standardized Continuous Density

� Let X1,X2, . . . be IID continuous random variables with common
mean µ and variance σ. We can compute the density fSn (x) for the
sums Sn = X1 + X2 + . . .+ Xn using the convolution.

� To compute the density fS∗
n
(x) for standardized sum S∗n

S∗n =
Sn − nµ√

nσ

use Theorem 5.7.1 (Ross, page 243):

FS∗
n
(x) = FSn

(
x
√

nσ + nµ
)

fS∗
n
(x) =

√
nσ · fSn

(
x
√

nσ + nµ
)
.
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Central Limit Theorem

Example

Example. Let X1,X2, . . . be IID exponential random variables with
common mean parameter λ. So,

E [Xi ] =
1
λ

Var(Xi) =
1
λ2 .

� Recall that the sum of n exponential random variables with
parameter λ is a gamma distributed random variable with parameters
(n, λ) (Section 6.3 of Ross).

� The density for S∗n in this case is

fSn (x) =
λe−λx (λx)n−1

(n − 1)!

fS∗
n
(x) =

√
n
λ
· fSn

(√nx + n
λ

)
.
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Central Limit Theorem

Uniform Distribution

� Central Limit Theorem for the uniform distribution on [0,1] plotted against
the standard normal distribution.
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Central Limit Theorem

Exponential Distribution

� Central Limit Theorem for the exponential distribution with parameter
λ = 1 plotted against the standard normal distribution.
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Examples

Example

Example
Fifty numbers are rounded-off to the nearest integer and the summed.
Suppose that the individual round-off errors are uniformly distributed
over (−0.5,0.5). What is the probability that the round-off error
exceeds the exact sum by more than 3?

Solution. Let Xi (i = 1, . . . ,50) be the round-off error on the i number,
and X = X1 + X2 + . . .+ X50 the total round-off error.

The Xi are IID and uniformly distributed, so

E [Xi ] = 0 Var(Xi ) =
1

12

E [X ] = 0 Var(X ) =
50
12

� Apply CLT to approximate the probability P {|X | > 3}
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Examples

Example – continued

� First standardize E , then apply the normal approximation

P {|E | > 3} = P {|X ∗| > 3− 0√
50/12

}

= P {|X ∗| > 6
√

3
5
√

2
}

= P {X ∗ > 6
√

3
5
√

2
} + P {X ∗ < −6

√
3

5
√

2
}

≈ 2− 2 · Φ
(6
√

3
5
√

2

)
≈ 2− 2(0.9292)

= 0.1416.
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Examples

Example

Example
A student’s grade is the average of 30 assignments, where each
assignment is recorded as an integer out of 100 possible points.
Suppose that the instructor makes an error in grading of ±k with
probability |ε/k |, where |k | ≤ 5 and ε = 1

20 . The distribution of errors is(
k 0 ±1 ±2 ±3 ±4 ±5
p 463

600
1

20
1

40
1

60
1

80
1

100

)
The final grade is obtained by averaging the 30 assignment grades.

What is the probability that the difference between the “correct
average grade" and the recorded average grade differs by less than
0.05 for a given student?
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Examples

Example – continued

� Let Xi (i = 1,2, . . . ,30) be the error between the actual score on the
i th assignment and the recorded score. We will assume the errors are
independent. Let X = X1 + X2 + . . .+ X30, the sum of the errors.

The statistics are computed from the distribution

E [Xi ] = 0 Var(Xi ) = 1.5
E [X ] = 0 Var(X ) = (30)1.5 = 45.

� Apply CLT to approximate the probability

P {−0.05 <
X
30

< 0.05}.
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Examples

Example – continued

� First standardize X , then apply the normal approximation.

P {−0.05 <
X
30

< 0.05} = P {−1.5 < X < 1.5}

= P {−1.5√
45

<
X − 0√

45
<

1.5√
45
}

≈ Φ
( 1.5√

45

)
− Φ

(−1.5√
45

)
≈ Φ(0.22)− Φ(−0.22) = 2 · Φ(0.22)− 1
≈ 2(0.5871)− 1
= 0.1742.

� Thus, there is a 17.4% chance that the student’s assignment
average is accurate to within 0.05.
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Examples

Example – continued. What is the probability that no error is made?
That is, approximate

P {X = 0} where X = X1 + . . .+ X30.

� Apply CLT, using continuity correction, since X is a discrete random
variable and we want to compute the probability at a possible value.

P {X = 0} = P {−0.5 ≤ X ≤ 0.5}

= P {−0.5− 0√
45

≤ X − 0√
45
≤ 0.5− 0√

45
}

≈ Φ
( 0.5√

45

)
− Φ

(−0.5√
45

)
≈ 2 · Φ(0.07)− 1
≈ 2(0.5279)− 1 = 0.0558

� There is only about a 5.6% that the recorded grade is correct.
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Examples

Example

Example
Based on data of similar bridges, the span of a certain bridge can
withstand a load, without structural damage, that is normally
distributed with mean 400 and standard deviation 40 (in units of 1000
pounds). Suppose the weight of a car is a random variable with mean
3 and standard deviation 0.3 (in units of 1000 pounds).

Approximately how many cars would have to be on the bridge span for
the probability of structural damage to exceed 10%?
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Examples

Example – continued
� Let X1,X2, . . . be random variables denoting the weight of each car
on the bridge, and let Sn = X1 + X2 + . . .+ Xn. Let Y denote the load
the bridge can withstand. Then (where units are in 100 pounds)

E [Xi ] = 3 SD(Xi ) = 0.3
E [Sn] = 3n SD(Sn) = 0.3

√
n

E [Y ] = 400 SD(Y ) = 40

�We want to find n so that the probability

P {Y ≤ Sn} ≥ 0.1 equivalently P {0 ≤ Sn − Y} ≥ 0.1

Assume Sn and Y are independent, so

µn = E [Sn − Y ] = 3n − 400 σn = SD(Sn − Y ) =
√

(0.3)2n + (40)2
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Examples

Example – continued

� First standardize, then apply the normal approximation:

0.1 ≤ P {0 ≤ Sn − Y}

= P {0− µn

σn
≤ Sn − Y − µn

σn
}

≈ 1− Φ
(
− µn

σn

)
= Φ

(µn

σn

)
Since Φ(x) increases as x increases, it is sufficient to have

µn

σn
≥ −1.29

or equivalently
3n − 400√

(0.3)2n + (40)2
≥ −1.29
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Examples

Example – continued

3n − 400√
(0.3)2n + (40)2

≥ −1.29

� This reduces to a quadratic equation:

9n2 − 2400n + 157,337 ≤ 0

The smallest value of n satisfying this equation is n = 117.

� If there are 117 or more cars on the bridge, then there is a greater
than 10% chance the load on the bridge is greater then it can
withstand without damage.
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