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Independence

Independent Random Variable

Recall. Two events E and F are independent if and only if

P {E ∩ F} = P {E} · P {F}.

Equivalently,
P(E |F ) = P {E}.

That is, knowing F does not change the probability of E .
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Independence

Independent Random Variable

Definition
Let X and Y be random variables over the same sample space with
joint distribution F (x , y) and marginal distribution FX (x) and FY (y).

X and Y are independent iff

F (a,b) = FX (a) · FY (b) for all reals a and b.

Equivalently,

P {X ≤ a, Y ≤ b} = P {X ≤ a} · P {Y ≤ b} for all reals a and b.
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Independence

Key Property

� Checking random variables are independent requires checking
infinitely many events are independent. We will shortly see a simple
test for independence.

Independence extends from basic events to all events.

Theorem
If X and Y are independent random variables, then for any events
{X ∈ A} and {Y ∈ B},

P {X ∈ A, Y ∈ B} = P {X ∈ A} · P {Y ∈ B}.

In particular, for all −∞ ≤ a ≤ b ≤ ∞,−∞ ≤ c ≤ d ≤ ∞,

P {a < X ≤ b, c < Y ≤ d} = P {a < X ≤ b} · P {c < Y ≤ d}
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Independence

Proof

I will prove the theorem for intervals.
The first identity is from Lecture 25 (s. 12) or Ross, p.259.

P {a < X ≤ b, c < Y ≤ d} = F (b,d) + F (a, c)− F (a,d)− F (b, c)

= FX (b)FY (d) + FX (a)FY (c)

−FX (a)FY (d)− FX (b)FY (c)

= FX (b)
(
FY (d)− FY (c)

)
−FX (a)

(
FY (d)− FY (c)

)
=

(
FX (b)− FX (a)

)
·
(
FY (d)− FY (c)

)
= P {a < X ≤ b} · P {c < Y ≤ d}.
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Independence

Equivalence: discrete case

� For discrete random variables, it is often easier to check the
following equivalent condition for independence.

Theorem
Let X and Y be discrete random variables with joint probability mass
function p(x , y) and marginal probability mass functions pX (x) and
pY (y).

X and Y are independent if and only if

p(x , y) = pX (x) · pY (y).
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Independence

Example: discrete case
Example. Let X and Y be discrete random variables with joint
distribution

p(i , j) =

{
1

36 if 1 ≤ i , j ≤ 6
0 otherwise.

Compute the marginal mass functions

pX (i) =
6∑

j=1

p(i , j) =
1
6

if 1 ≤ i ≤ 6

pY (j) =
6∑

i=1

p(i , j) =
1
6

if 1 ≤ j ≤ 6

and both are 0 otherwise.
� X and Y are independent since

p(i , j) = pX (i) · pY (j) for all values i and j .
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Independence

Equivalence: continuous case

� For continuous random variables, it is often easier to check the
following equivalent condition for independence.

Theorem
Let X and Y be continuous random variables with joint density function
f (x , y) and marginal density functions fX (x) and fY (y).

X and Y are independent if and only if

f (x , y) = fX (x) · fY (y).
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Independence

Example: continuous case
Example. Let (X ,Y ) have a joint density given by

f (x , y) =

{
λµe−λx−µy , if 0 ≤ x , y <∞,
0 otherwise.

� Compute the marginal densities fX (x) and fY (y).

fX (x) =

∫ ∞
0

λµe−λx−µy dy

= λe−λx
∫ ∞

0
µe−µy dy = λe−λx

fY (y) =

∫ ∞
0

λµe−λx−µy dx = µe−µy .

and both are 0 otherwise.
� X and Y are independent since

f (x , y) = fX (x) · fY (y) for all values x and y .
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Independence

General condition for Independence

�A Warning. The following Proposition provides a more general condition
for independence, however it is easily misapplied. I think it is best to compute
the marginal density (mass) function, and verify independence using the
other two theorem.

Proposition (Ross, Proposition 2.1)
The continuous (discrete) random variables X and Y are independent
if and only if their joint probability density (mass) function can be
expressed as

fX ,Y (x , y) = h(x) · g(y) for all reals x and y.

Note. The function g(x) and h(y) are NOT the marginal densities for X and
Y , although the actual marginal densities will be

fX (x) = C1h(x) fY (y) = C2g(y) for some constants C1 and C2.
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Independence

Proof
� If X and Y are independent, then

fX ,Y (x , y) = fY (x) · fY (y) for all x and y .

� Conversely, suppose that

fX ,Y (x , y) = h(x) · g(y) for all x and y .

Then

1 =

∫ ∞
−∞

∫ ∞
−∞

fX ,Y (x , y) dx dy

=

∫ ∞
−∞

h(x) dx
∫ ∞
−∞

g(y) dy

= C1 · C2

where C1 =
∫∞
−∞ h(x) dx and C2 =

∫∞
−∞ g(y) dy .
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Independence

Proof – continued

1 = C1 · C2 C1 =

∫ ∞
−∞

h(x) dx C2 =

∫ ∞
−∞

g(y) dy

� Compute the marginal distributions.

fX (x) =

∫ ∞
−∞

fX ,Y (x , y) dy = C2h(x)

fY (y) =

∫ ∞
−∞

fX ,Y (x , y) dx = C1g(y)

So,
fX ,Y (x , y) = h(x) · g(y) =

fX (x)

C2
· fY (y)

C1
= fX (x) · fY (y).

Therefore, X and Y are independent.
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Independence

Example
Example. Let (X ,Y ) have the joint distribution

fX ,Y (x , y) =

{
1 if 0 < x , y < 1
0 otherwise.

Let h(x) and g(y) be the functions

h(x) = −27 g(y) = − 1
27

if 0 < x , y < 1,

and are 0 otherwise. Then X and Y are independent since

fX ,Y (x , y) = h(x) · g(y) for all x and y .

But the marginal densities for X and Y are

fX (x) = 1 fY (y) = 1 if 0 < x , y < 1,

and are 0 otherwise.
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Independence

Example

Example. A little care is needed to apply the Proposition.
Let X count successes and Y count failures in n Bernoulli trials. So,

p(i , j) =

{
n! pi

i!
(1−p)j

j! if i + j = n
0 otherwise .

X and Y are NOT independent, since p(i , j) is NOT a product of two
functions g(j) and h(i) for EVERY i and j .

Compute the marginal distributions:

pX (i) =
n!

i!(n − i)!
pi(1− p)n−i

pY (j) =
n!

j!(n − j)!
pn−j(1− p)j

p(i , j) 6= pX (i) · pY (j) for any i and j .

Compare to Ross, Example 2f.
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Example: Poisson Distributions

Example

Example
A hospital averages λ births per day. The probability that a newborn is
a boy is p and (1− p) that it is a girl. It is reasonable to model the
random variable X denoting the number births in a day as a Poisson
random variable. (Why?)

What are the marginal mass functions for B and G, denoting the
number of boys and girls born in a day? Are they independent?
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Example: Poisson Distributions

Example – Continued

�We need to compute P {B = n, G = m} for integers 0 ≤ n,m to
obtain the marginal mass functions and assess independence.

Conditionalize on {X = n + m} (note that X = B + G):

P {B = n, G = m} = P(B = n, G = m |X = n + m) · P {X = n + m}
+ P(B = n, G = m |X 6= n + m) · P {X 6= n + m}

= P(B = n, G = m |X = n + m) · P {X = n + m}

= P(B = n, G = m |X = n + m) ·
(

e−λ
(λ)n+m

(n + m)!

)

� Given that there were n + m births, the number of boys and girls are
binomially distributed, so

P(B = n, G = m |X = n + m) =

(
n + m

n

)
pn(1− p)m
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Example: Poisson Distributions

Example – Continued

� Substituting

P {B = n, G = m} = P(B = n, G = m |X = n + m) · P {X = n + m}

=

(
n + m

n

)
pn(1− p)m ·

(
e−λ

(λ)n+m

(n + m)!

)
=

(n + m)!

n!m!
pn(1− p)m ·

(
e−λ

(λ)n+m

(n + m)!

)
= e−λ

(λp)n · (λ(1− p))m

n!m!

=
(

e−λp (λp)n

n!

)
·
(

e−λ(1−p) (λ(1− p))m

m!

)
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Example: Poisson Distributions

Example – Continued

P {B = n, G = m} =
(

e−λp (λp)n

n!

)
·
(

e−λ(1−p) (λ(1− p))m

m!

)
� The marginal mass functions:

P {B = n} =
(

e−λp (λp)n

n!

)∑
m

(
e−λ(1−p) (λ(1− p))m

m!

)
= e−λp (λp)n

n!

P {G = m} = e−λ(1−p) (λ(1− p))m

m!

� B and G are independent since

P {B = n, G = m} = P {B = n} · P {G = m}

are Poisson random variables with parameters λp and λ(p − 1) – the
expected number of boys and girls born in a given day.
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Example: Poisson Distributions

Example – continued

Example. Suppose the hospital averages λ = 20 births in a day, with
boys and girls equally likely. On a given day there are 18 boys born.
What is the probability that 10 girls were born on this day?

� Compute using the fact that B and G are independent, and Poisson
distributed with parameter µ = 20 · 1

2 = 10.

P(G = 10 |B = 18) = P {G = 10}

= e−10 1010

10!
≈ 0.1251
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Example: Poisson Distributions

Example – continued

� The boys and girls born in a given day are Poisson distributed with
parameter µ = 10.

5 10 15 20 25 30

0.02

0.04

0.06

0.08

0.10

0.12
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Example: Broken Sticks

Example: broken stick

Example
We break a stick at random in two places, what is the probability that
the three pieces form a triangle?

Assume that the stick has length 1, and that the breaks occur
uniformly in the interval (0,1). Let the two break points be X and Y .

XY

0 1
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Example: Broken Sticks

Example – continued

� (Euclid, I, Postulate 22) Three lengths can form a triangle if and
only if the sum of any two are greater than the third.

� This rules out the following events

{0 < X < Y ≤ 1
2
} {1

2
< X < Y ≤ 1}.

That is, X and Y must be on opposite side of the midpoint 1
2

�We also need the following condition, so the third side is not too
long,

|X − Y | < 1
2
.
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Example: Broken Sticks

Example – continued

� If a + b + c = 1 and a > b + c, then a > 1
2 . But, our two conditions

(i) X <
1
2
< Y or Y <

1
2
< X

(ii) |X − Y | < 1
2

guarantee this cannot happen:

XY

0 1

a b c

� a, c < 1
2 by (i), and b < 1

2 by (ii).
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Example: Broken Sticks

Example – continued
� The area of possible values of X and Y . Bounded between the lines

Y = X ± 1
2

X =
1
2

= Y

The ratio of the area of this region to the area of the unit square (= 1) is the
probability.

¬ x-1�2

x+1�2®

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
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Example: Broken Sticks

Example – continued

� The area of each triangle is the same; so the area of the region is
twice the area of the upper triangle:

2
∫ 1

2

0

∫ x+ 1
2

1
2

dy dx = 2
∫ 1

2

0
x dx

=
2
8
.

The probability of breaking the stick in points X and Y so that it forms
a triangle is 1

4 .
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Joint Uniform Distribution

Joint Uniform Distribution

� Intuitively, we choose a point P “at random" from a region R if the
probability the point lies in any subregion of R is proportional the area
of the subregion.

Definition
A random variable (X ,Y ) is uniformly distributed over an integrable
region R in the plane if its joint density is

f (x , y) =

{
(area of R)−1 if (x , y) ∈ R
0 otherwise .
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Joint Uniform Distribution

Example

Example. Let P = (X ,Y ) be uniformly distributed in the rectangle
[0,1]× [0,1]. The joint density is

f (x , y) =

{
1 if (x , y) ∈ [0,1]× [0,1]

0 otherwise .

The coordinate variables X and Y are independent, since f (x , y)
factors

f (x , y) = h(x) · g(y)

where h(x) = −27 and g(y) = − 1
27 when 0 ≤ x , y ≤ 1 and 0

otherwise.
The actual marginal densities are

fX (x) =

∫ 1

0
dy = 1

fY (y) =

∫ 1

0
dx = 1
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Joint Uniform Distribution

Unit Square
� Coordinate variables (X ,Y ) are independent on the unit square.

X

Y ®
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Joint Uniform Distribution

Example

Example. Let P = (X ,Y ) be uniformly distributed in the rectangle
[0,a]× [0,b]. The joint density is

f (x , y) =

{
1

ab if 0 ≤ x ≤ a, 0 ≤ y ≤ b
0 otherwise .

The coordinate variables X and Y are independent.
The actual marginal densities are

fX (x) =

∫ b

0

1
ab

dy =
1
a

fY (y) =

∫ a

0

1
ab

dx =
1
b

which is exactly what you would guess, since X is uniformly distributed
in [0,a] and Y in [0,b].
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Joint Uniform Distribution

Example
Example. Let P = (X ,Y ) be uniformly distributed in the unit circle C.
The joint density is

f (x , y) =

{
1
π if (x , y) ∈ C
0 otherwise .

However, X and Y are NOT independent, which you can verify from
their marginal densities:

fX (x) =

∫ √1−x2

−
√

1−x2

1
π

dy =
2
√

1− x2

π

fY (y) =

∫ √1−y2

−
√

1−y2

1
π

dx =
2
√

1− y2

π
.

However, when (x , y) ∈ C

f (x , y) 6= fX (x) · fY (y).
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Joint Uniform Distribution

Unit Circle
� Coordinate variables (X ,Y ) are independent on the unit square.

X

Y ®
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