

Independent Random Variable

Recall. Two events *E* and *F* are independent if and only if

 $\mathbf{P}\{E \cap F\} = \mathbf{P}\{E\} \cdot \mathbf{P}\{F\}.$

Equivalently,

 $\mathbf{P}(E \mid F) = \mathbf{P}\{E\}.$

Math 425 Intro to Probability Lecture 26

That is, knowing F does not change the probability of E.

Kenneth Harris (Math 425)

Math 425 Intro to Probability Lecture 26

March 18, 2009 1/1

Independence

Independent Random Variable

Definition

Let X and Y be random variables over the same sample space with joint distribution F(x, y) and marginal distribution $F_X(x)$ and $F_Y(y)$.

X and Y are independent iff

$$F(a,b) = F_X(a) \cdot F_Y(b)$$
 for all reals *a* and

Equivalently,

 $P\{X \le a, Y \le b\} = P\{X \le a\} \cdot P\{Y \le b\}$ for all reals *a* and *b*. **Key Property**

Kenneth Harris (Math 425)

Checking random variables are independent requires checking infinitely many events are independent. We will shortly see a simple

Independence

test for independence. Independence extends from basic events to all events.

Theorem

If X and Y are independent random variables, then for any events $\{X \in A\}$ and $\{Y \in B\}$,

$$\boldsymbol{P}\{X \in \boldsymbol{A}, Y \in \boldsymbol{B}\} = \boldsymbol{P}\{X \in \boldsymbol{A}\} \cdot \boldsymbol{P}\{Y \in \boldsymbol{B}\}.$$

In particular, for all $-\infty < a < b < \infty$, $-\infty < c < d < \infty$.

$$P\{a < X \le b, \ c < Y \le d\} = P\{a < X \le b\} \cdot P\{c < Y \le d\}$$

b.

March 18, 2009

3/1

Independence

Proof

I will prove the theorem for intervals.

The first identity is from Lecture 25 (s. 12) or Ross, p.259.

$$P\{a < X \le b, c < Y \le d\} = F(b,d) + F(a,c) - F(a,d) - F(b,c)$$

$$= F_X(b)F_Y(d) + F_X(a)F_Y(c) - F_X(a)F_Y(d) - F_X(b)F_Y(c)$$

$$= F_X(b)(F_Y(d) - F_Y(c)) - F_X(a)(F_Y(d) - F_Y(c))$$

$$= (F_X(b) - F_X(a)) \cdot (F_Y(d) - F_Y(c))$$

$$= \mathbf{P} \{ a < X \le b \} \cdot \mathbf{P} \{ c < Y \le d \}.$$

Equivalence: discrete case

For discrete random variables, it is often easier to check the following equivalent condition for independence.

Theorem

Let X and Y be discrete random variables with joint probability mass function p(x, y) and marginal probability mass functions $p_X(x)$ and $p_Y(y)$.

X and Y are independent if and only if

$$\rho(x,y)=\rho_X(x)\cdot\rho_Y(y).$$

Math 425 Intro to Probability Lecture 26

Kenneth Harris (Math 425)

Math 425 Intro to Probability Lecture 26

March 18, 2009 6 / 1

Independence

Example: discrete case

Example. Let *X* and *Y* be discrete random variables with joint distribution

$$p(i,j) = \begin{cases} rac{1}{36} & ext{if } 1 \leq i,j \leq 6 \\ 0 & ext{otherwise.} \end{cases}$$

Compute the marginal mass functions

$$p_X(i) = \sum_{j=1}^6 p(i,j) = \frac{1}{6}$$
 if $1 \le i \le 6$
 $p_Y(j) = \sum_{i=1}^6 p(i,j) = \frac{1}{6}$ if $1 \le j \le 6$

and both are 0 otherwise.

 $\mathbb{R}^{\mathbb{P}} X$ and Y are independent since

$$p(i,j) = p_X(i) \cdot p_Y(j)$$
 for all values *i* and *j*.

Equivalence: continuous case

For continuous random variables, it is often easier to check the following equivalent condition for independence.

Independence

Theorem

Kenneth Harris (Math 425)

Let X and Y be continuous random variables with joint density function f(x, y) and marginal density functions $f_X(x)$ and $f_Y(y)$.

X and Y are independent if and only if

 $f(x,y) = f_X(x) \cdot f_Y(y).$

March 18, 2009

Independence

Example: continuous case

Example. Let (X, Y) have a joint density given by

$$f(x,y) = \begin{cases} \lambda \mu e^{-\lambda x - \mu y}, & \text{if } 0 \le x, y < \infty \\ 0 & \text{otherwise.} \end{cases}$$

Solution Compute the marginal densities $f_X(x)$ and $f_Y(y)$.

$$f_X(x) = \int_0^\infty \lambda \mu e^{-\lambda x - \mu y} \, dy$$

= $\lambda e^{-\lambda x} \int_0^\infty \mu e^{-\mu y} \, dy = \lambda e^{-\lambda x}$
$$f_Y(y) = \int_0^\infty \lambda \mu e^{-\lambda x - \mu y} \, dx = \mu e^{-\mu y}.$$

and both are 0 otherwise. $\mathbb{R}^{\mathbb{Z}} X$ and Y are independent since

$$f(x, y) = f_X(x) \cdot f_Y(y)$$
 for all values x and y.

March 18, 2009

March 18, 2009

12/1

10/1

	Kenneth Harris (Math 425)	Math 425 Intro to Probability Lecture 26	
--	---------------------------	--	--

Independence

Proof

 \mathbb{P} If X and Y are independent, then

$$f_{X,Y}(x,y) = f_Y(x) \cdot f_Y(y)$$
 for all x and y.

Conversely, suppose that

$$f_{X,Y}(x,y) = h(x) \cdot g(y)$$
 for all x and y.

Then

$$1 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx \, dy$$
$$= \int_{-\infty}^{\infty} h(x) \, dx \int_{-\infty}^{\infty} g(y) \, dy$$
$$= C_1 \cdot C_2$$

where
$$C_1 = \int_{-\infty}^{\infty} h(x) dx$$
 and $C_2 = \int_{-\infty}^{\infty} g(y) dy$.
Kenneth Harris (Math 425) Math 425 Intro to Probability Lecture 26

General condition for Independence

Image: Warning. The following Proposition provides a more general condition for independence, however it is easily misapplied. I think it is best to compute the marginal density (mass) function, and verify independence using the other two theorem.

Proposition (Ross, Proposition 2.1)

The continuous (discrete) random variables X and Y are independent if and only if their joint probability density (mass) function can be expressed as

 $f_{X,Y}(x,y) = h(x) \cdot g(y)$ for all reals x and y.

Note. The function g(x) and h(y) are NOT the marginal densities for X and Y, although the actual marginal densities will be

$$f_X(x) = C_1 h(x)$$
 $f_Y(y) = C_2 g(y)$ for some constants C_1 and C_2 .

Math 425 Intro to Probability Lecture 26

Independence

March 18, 2009 11 / 1

Proof – continued

$$1 = C_1 \cdot C_2 \qquad C_1 = \int_{-\infty}^{\infty} h(x) \, dx \qquad C_2 = \int_{-\infty}^{\infty} g(y) \, dy$$

Compute the marginal distributions.

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy = C_2 h(x)$$

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx = C_1 g(y)$$

So,

$$f_{X,Y}(x,y) = h(x) \cdot g(y) = \frac{f_X(x)}{C_2} \cdot \frac{f_Y(y)}{C_1} = f_X(x) \cdot f_Y(y)$$

Therefore, X and Y are independent.

Independence

Example

Example. Let (X, Y) have the joint distribution

$$f_{X,Y}(x,y) = \begin{cases} 1 & \text{if } 0 < x, y < 1 \\ 0 & \text{otherwise.} \end{cases}$$

Let h(x) and g(y) be the functions

$$h(x) = -27$$
 $g(y) = -\frac{1}{27}$ if $0 < x, y < 1$

and are 0 otherwise. Then X and Y are independent since

$$f_{X,Y}(x,y) = h(x) \cdot g(y)$$
 for all x and y.

But the marginal densities for X and Y are

$$f_X(x) = 1$$
 $f_Y(y) = 1$ if $0 < x, y < 1$,

and are 0 otherwise.

12 11 11 1	
Konnoth Harrie	(Math //25)
1 CHINCH HAINS	

Math 425 Intro to Probability Lecture 26

Example: Poisson Distributions

Example

Example

A hospital averages λ births per day. The probability that a newborn is a boy is *p* and (1 - p) that it is a girl. It is reasonable to model the random variable *X* denoting the number births in a day as a Poisson random variable. (Why?)

What are the marginal mass functions for *B* and *G*, denoting the number of boys and girls born in a day? Are they independent?

Example

Example. A little care is needed to apply the Proposition. Let *X* count successes and *Y* count failures in *n* Bernoulli trials. So,

$$p(i,j) = \begin{cases} n! \frac{p^{j}}{i!} \frac{(1-p)^{j}}{j!} & \text{if } i+j=n\\ 0 & \text{otherwise} \end{cases}$$

X and *Y* are NOT independent, since p(i, j) is NOT a product of two functions g(j) and h(i) for EVERY *i* and *j*. Compute the marginal distributions:

$$p_X(i) = \frac{n!}{i!(n-i)!}p^i(1-p)^{n-i}$$

$$p_Y(j) = \frac{n!}{j!(n-j)!}p^{n-j}(1-p)^j$$

$$p(i,j) \neq p_X(i) \cdot p_Y(j) \quad \text{for any } i \text{ and } j.$$

Compare to Ross, Example 2f.

Math 425 Intro to Probability Lecture 26

March 18, 2009 15 / 1

Example: Poisson Distributions

Example – Continued

Kenneth Harris (Math 425)

^{ICP} We need to compute **P** {B = n, G = m} for integers $0 \le n, m$ to obtain the marginal mass functions and assess independence. Conditionalize on {X = n + m} (note that X = B + G):

$$\mathbf{P} \{B = n, G = m\} = \mathbf{P}(B = n, G = m | X = n + m) \cdot \mathbf{P} \{X = n + m\} \\
+ \mathbf{P}(B = n, G = m | X \neq n + m) \cdot \mathbf{P} \{X \neq n + m\} \\
= \mathbf{P}(B = n, G = m | X = n + m) \cdot \mathbf{P} \{X = n + m\} \\
= \mathbf{P}(B = n, G = m | X = n + m) \cdot \left(e^{-\lambda} \frac{(\lambda)^{n+m}}{(n+m)!}\right)$$

Given that there were n + m births, the number of boys and girls are binomially distributed, so

$$\mathbf{P}(B=n, G=m | X=n+m) = \binom{n+m}{n} p^n (1-p)^m$$

March 18, 2009

Example: Poisson Distributions

Example – Continued

Substituting

$$\mathbf{P} \{B = n, G = m\} = \mathbf{P}(B = n, G = m | X = n + m) \cdot \mathbf{P} \{X = n + m\}$$

$$= \binom{n+m}{n} p^n (1-p)^m \cdot \left(e^{-\lambda} \frac{(\lambda)^{n+m}}{(n+m)!}\right)$$

$$= \frac{(n+m)!}{n!m!} p^n (1-p)^m \cdot \left(e^{-\lambda} \frac{(\lambda)^{n+m}}{(n+m)!}\right)$$

$$= e^{-\lambda} \frac{(\lambda p)^n \cdot (\lambda (1-p))^m}{n!m!}$$

$$= \left(e^{-\lambda p} \frac{(\lambda p)^n}{n!}\right) \cdot \left(e^{-\lambda (1-p)} \frac{(\lambda (1-p))^m}{m!}\right)$$
(Kentet Harris (Math 425) Math 425 Intro to Probability Lecture 26 Math 426 Math 426 Math 425 Math 426 M

Example – Continued

$$\mathbf{P}\left\{B=n,\ G=m\right\} = \left(e^{-\lambda p}\frac{(\lambda p)^n}{n!}\right) \cdot \left(e^{-\lambda(1-p)}\frac{(\lambda(1-p))^m}{m!}\right)$$

The marginal mass functions:

$$\mathbf{P} \{B = n\} = \left(e^{-\lambda p} \frac{(\lambda p)^n}{n!}\right) \sum_m \left(e^{-\lambda (1-p)} \frac{(\lambda (1-p))^m}{m!}\right)$$
$$= e^{-\lambda p} \frac{(\lambda p)^n}{n!}$$
$$\mathbf{P} \{G = m\} = e^{-\lambda (1-p)} \frac{(\lambda (1-p))^m}{m!}$$

B and G are independent since

$$\mathbf{P} \{ B = n, G = m \} = \mathbf{P} \{ B = n \} \cdot \mathbf{P} \{ G = m \}$$

are Poisson random variables with parameters λp and $\lambda(p-1)$ – the expected number of boys and girls born in a given day.

Math 425 Intro to Probability Lecture 26

March 18, 2009 20 / 1

Example: Poisson Distributions

Example – continued

Example. Suppose the hospital averages $\lambda = 20$ births in a day, with boys and girls equally likely. On a given day there are 18 boys born. What is the probability that 10 girls were born on this day?

Solution Compute using the fact that *B* and *G* are independent, and Poisson distributed with parameter $\mu = 20 \cdot \frac{1}{2} = 10$.

$$\mathbf{P}(G = 10 | B = 18) = \mathbf{P} \{G = 10\}$$

= $e^{-10} \frac{10^{10}}{10!}$
 ≈ 0.1251

Example: Poisson Distributions

Example – continued

The boys and girls born in a given day are Poisson distributed with parameter $\mu = 10$.

Example: broken stick

Example

We break a stick at random in two places, what is the probability that the three pieces form a triangle?

Assume that the stick has length 1, and that the breaks occur uniformly in the interval (0, 1). Let the two break points be X and Y.

Example: Broken Sticks

Example - continued

For a b + c = 1 and a > b + c, then $a > \frac{1}{2}$. But, our two conditions

(*i*)
$$X < \frac{1}{2} < Y$$
 or $Y < \frac{1}{2} < X$
(*ii*) $|X - Y| < \frac{1}{2}$

guarantee this cannot happen:

Example – continued

(Euclid, I, Postulate 22) Three lengths can form a triangle if and only if the sum of any two are greater than the third.

Provide the following events

$$\{0 < X < Y \leq \frac{1}{2}\} \qquad \{\frac{1}{2} < X < Y \leq 1\}.$$

That is, X and Y must be on opposite side of the midpoint $\frac{1}{2}$

 ${}^{\scriptsize\hbox{\tiny \ensuremath{\mathbb{W}}}}$ We also need the following condition, so the third side is not too long,

$$|X-Y|<\frac{1}{2}.$$

Kenneth Harris (Math 425)

Math 425 Intro to Probability Lecture 26

March 18, 2009 25 / 1

Example: Broken Sticks

Example - continued

 \mathbb{P} The area of possible values of X and Y. Bounded between the lines

$$Y = X \pm \frac{1}{2} \qquad X = \frac{1}{2} = Y$$

The ratio of the area of this region to the area of the unit square (= 1) is the probability.

Example: Broken Sticks

The area of each triangle is the same; so the area of the region is

 $2\int_0^{\frac{1}{2}}\int_{\frac{1}{2}}^{x+\frac{1}{2}} dy \, dx = 2\int_0^{\frac{1}{2}} x \, dx$

The probability of breaking the stick in points X and Y so that it forms

Math 425 Intro to Probability Lecture 26

 $= \frac{2}{8}$.

Example - continued

twice the area of the upper triangle:

Joint Uniform Distribution

Joint Uniform Distribution

Intuitively, we choose a point P "at random" from a region R if the probability the point lies in any subregion of R is proportional the area of the subregion.

Definition

Unit Square

A random variable (X, Y) is uniformly distributed over an integrable region *R* in the plane if its joint density is

$$f(x,y) = egin{cases} (ext{area of } R)^{-1} & ext{if } (x,y) \in R \ 0 & ext{otherwise }. \end{cases}$$

Kenneth Harris (Math 425) Math 425 Ir

Joint Uniform Distribution

Math 425 Intro to Probability Lecture 26

X

March 18, 2009 30 / 1

Joint Uniform Distribution

Example

a triangle is $\frac{1}{4}$.

Kenneth Harris (Math 425)

Example. Let P = (X, Y) be uniformly distributed in the rectangle $[0, 1] \times [0, 1]$. The joint density is

$$f(x,y) = \begin{cases} 1 & \text{if } (x,y) \in [0,1] \times [0,1] \\ 0 & \text{otherwise }. \end{cases}$$

The coordinate variables X and Y are independent, since f(x, y) factors

$$f(x,y) = h(x) \cdot g(y)$$

where h(x) = -27 and $g(y) = -\frac{1}{27}$ when $0 \le x, y \le 1$ and 0 otherwise.

The actual marginal densities are

$$f_X(x) = \int_0^1 dy = 1$$

 $f_Y(y) = \int_0^1 dx = 1$

Kenneth Harris (Math 425)

32 / 1

March 18, 2009

Joint Uniform Distribution

Example

Example. Let P = (X, Y) be uniformly distributed in the rectangle $[0, a] \times [0, b]$. The joint density is

$$f(x,y) = \begin{cases} \frac{1}{ab} & \text{if } 0 \le x \le a, \ 0 \le y \le b\\ 0 & \text{otherwise} \end{cases}.$$

The coordinate variables X and Y are independent.

The actual marginal densities are

$$f_X(x) = \int_0^b \frac{1}{ab} \, dy = \frac{1}{a}$$

$$f_Y(y) = \int_0^a \frac{1}{ab} \, dx = \frac{1}{b}$$

which is exactly what you would guess, since X is uniformly distributed in [0, a] and Y in [0, b].

Kenneth Harris (Math 425)	Math 425 Intro to Probability Lecture 26	March 18, 2009	33 / 1

Joint Uniform Distribution

Unit Circle

Example

Example. Let P = (X, Y) be uniformly distributed in the unit circle *C*. The joint density is

$$f(x,y) = \begin{cases} rac{1}{\pi} & ext{if } (x,y) \in C \\ 0 & ext{otherwise }. \end{cases}$$

However, X and Y are NOT independent, which you can verify from their marginal densities:

$$f_X(x) = \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{1}{\pi} \, dy = \frac{2\sqrt{1-x^2}}{\pi}$$
$$f_Y(y) = \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \frac{1}{\pi} \, dx = \frac{2\sqrt{1-y^2}}{\pi}.$$

However, when $(x, y) \in C$

$$f(x, y) \neq f_X(x) \cdot f_Y(y).$$

Math 425 Intro to Probability Lecture 26

```
March 18, 2009 34 / 1
```