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Functions of a Random Variable: Expectation

’¥” There are an overwhelming number of possible random variables
Math 425 which can be derived from even a single distribution, such as U, a
Introduction to Probability uniformly distributed r.v., by applying a function, g(U).
Lecture 21 It is nice to know that we need only one theorem to dispose of

expectation:

Kenneth Harris

Theorem
kaharrifumich.edu Let X be a continuous random variable with density fy andg : R — R a
Department of Mathematics continuous function (except, perhaps on finitely many points). Then
University of Michigan
o
Varch 6. 2009 Elo(0] = | ot

provided this integral exists.
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Functions of a Random Variable: Cumulative Proof
Distribution

Suppose g(t) is strictly increasing. Then gis 1-1, so has an inverse (and both

will be differentiable on all but a discrete set of points).
I¥” Suppose we would like to compute the cumulative distribution of a

random variable g(X), when we have Fy. Fy() = P{y<t}
One theorem is all we need to know. = P{g(X) <t}
™ = P{X<g'(t)}
e = Fx(g™(1)

Let X be a continuous random variable, and g(t) a strictly increasing o _
function on the range of X. Let Y = g(X). Suppose g(t) is strictly decreasing.

The cumulative distribution of Y is Fy(t) = P{Y<t}

Fy(t) = Fx(g~'(1)). - gg(_fgt)si}x}

— 1 P(X<g (1)}
—1

Fy(t) =1— Fx(g~'(1)). = 1—Fx(g7'(1)

If g(x) is strictly decreasing on the range of X, then
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Functions of a Random Variable: Density

¥ A function g(t) is monotonic on its domain if it is either strictly
increasing or strictly decreasing on its domain.

Theorem
Let X be a continuous random variable, and g(t) a monotonic function
function on the range of X. Let Y = g(X).

The density of Y is

() = tx(g (1) | 2o (0]

Note: Compare to Ross, Theorem 5.7.1, page 243.
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Example: Uniform Distribution

Example. There is a uniform distribution for each interval [« 3].
The only one you need to know is the uniform distribution U on [0, 1].

¥ Let V be the uniformly distributed r.v. on [, 3].
Define g(t) by

o) = (3-a)t+a so. g7l()=
Then V = g(U):
te0,1] — (B—a)t+a€]a,f]

@ Scaleby 3 —ato (8 — a)t.
@ Shiftby ato (8 — a)t + a.
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Proof

Suppose g(t) is strictly increasing (so %g*(t) > 0):

fr(t) = —Fy(t)

d

= fx(g7'()- \ag*1(t)\ (chain rule)

Suppose g(t) is strictly decreasing (so %g*‘ (t) <0):

MO = TR

= %(1 — Fx(g7' (1))

= fx(g7'(1)- \%g*1(t)| (chain rule)
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Example: Uniform Distribution

gy fmad
9 O=5—0 @9 O=5—,

gty = (B-a)t+a

I U is uniformly distributed on [0, 1].

Fut)=t  fy(t) =1
E[V]:% Var(V):{I—Z.
¥V = g(U) is uniformly distributed on [«, J].
Fu(t) = Fulg™' () = ;j‘“ ) = 5 ! -
-« —a)?
E[V] = E[g(t)] = (62 )+a Var(V)_(ﬁm).
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Functions of a Random Variable

=" Even if g is not strictly increasing or decreasing, we can often apply the
same technique (although the situation may be more complicated).

Example. Let X be a continuous r.v. with known cumulative
distribution Fx and density fy. Let Y = X2.

Fy(t) = P{Y <t}

= P{-Vt<X<Vt}

= P{X<Vi}-P{X<-Vt}
= Fx(Vt)— Fx(—V1)

WO = S
— SRV - F(-VD)]
1
= [fx(ﬂ)+fx(_ﬁ)] ﬁ

Kenneth Harris (Math 425) Math 425 Introduction to Probability Lecture & March 6, 2009 10/32

Center of a Normal Distribution

5" 1, provides the center of the distribution— in fact, it is the mean.

5" The binomial and Poisson distributions approximate a bell curve — which is
the graph of the density of a normal distribution. There is a deeper reason for

this — more to follow.
Kenneth Harris (Math 425)
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Normal Density

’¥” The most important density function is the normal density function.
Definition
The normal density function with parameters i and o2 is defined as

1 o(t-np/ao?

Vero

A random variable is said to be normally distributed with parameters p
and o2, if its density function is a normal density function for some
parameters 1 and o°.

for every t € R.
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Spread of a Normal Distribution

¥ 52 provides the spread of the distribution — in fact, it is the variance, where
o is the standard deviation.

The graphs show varying standard deviation o.

0,

<> —0 is —1_ 1~
Note that the peak value, at . = 0, is Nerot where e 0.399.
Math 425 Introduction to Probability Lecture &
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Standard Distribution

®¥” There is only one normal distribution you need to know.

Defintion. The normal random variable with parameters p = 0 and
02 =1 is called the standard normal random variable, which | will write
as Z (as does Ross).

1 eft2 /2
ven

The cumulative distribution for Z is written by :

Fz(a) = d(a) = \/127/_51 e /2 gt

fz(t) = for every t € R.
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Standardization

’¥” To calculate the cumulative distribution for a normally distributed r.v.
X with parameters 1 and o2.
Reduce to the standard distribution:
P{X < a}
= P{oZ+pu<a}
_ a—p
= P{Z< . }

= o

This process of changing a normal random variable to a standard one
is known as standardization.

5" The distribution ¢ can be found in a table of values (see Ross, page 222).

Kenneth Harris (Math 425)
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Proof of equivalence

I |f X is a normal random variable with parameters 1 and o2, then

X—oZipy z=ZX—F
g
Reason. Define g by
t_
g)y=ot+p g'()=—F
Let X = g(Z). By the previous theorem
_ t—p 1
(D) = f(—5)-
I R L
Veno
— 1 e—(t—;L)z/ZUZ
2no
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Example

Example. Suppose X is normally distributed with parameter . = 10
and 02 = 9. Whatis P {4 < X < 16}.

Solution. By standardizing X: Z=(X-10)/3:

4-10 _X-10 _16-10
< <

Pleg =35 =35

= 0(2) - &(-2)

= 2.9(2)—1~0.9544

P{4<X<16} =

EZ” Typically, a table gives only values of ®(a) for a > 0.

o(—a)=1-d(a).
When a < 0, so that —a > 0:
®(2) = 0.9772 and ¢(—2) = 1 — $(2) = 0.0228.
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Symmetry Normal Distribution

5" The standard normal distribution is symmetric around p = 0.
=1-P{Z<1}=P{1 <Z}.

02

01
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Three little facts

I¥” This section is dedicated to proving three facts about the standard
normal random variable Z.

@ 1-(t) is a probability density function.
Q@ E[Z]=0.
Q Var(2) =1.

IE” |t follows that for any normal random variable X with parameters p
and o2

@ fx(t) is a probability density function.
Q E[X]=pu.
Q Var(X) = o2
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Symmetry of Normal Distribution

i¥" The normal distribution ¢ is symmetric about i = 0.

d(—a)=1-9(a) —o00 < a<oo.

Reason. Key is to use change of variables (line 2)

—a
d(—a) = \/12?/ e 24t

_ / T_eCUP2qy letu= —t

= /| -

1 & 2
= — [ eY/2qu
\/27r/a
= P{a<Z}=1-P{Z<a}
= 1-d(a).
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Standard density functions

O Let Z be the standard r.v. The function
fz(t) = e
is a probability density function.

(a). It is clear that fz(t) > 0O for all real numbers t.

(b). We must show

1 & 2
1 :/ e t/2dt
\/27T —00

The problem is that the function [ e~"/2 cannot be evaluated in terms of
elementary functions, like you can with other familar functions from Calculus.
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Standard density functions Standard density functions

I¥” Instead we compute /, where

(o)
2
I:/_ooe i Po= /OO /OO e~ ("2 it du

. 2 . .
by computing /= and converting to double integral form /21 dr do

1
c\
¥
° 3

P = /” o—E/2 gt /OO e V"2 du L
( — )< —co ) = 277/ e 2rdr s=-r?/2,ds=—rdr
[eS) 00 0
_ —(4u?) /2 . 00
0
=" Convert to polar coordinates (the sum of squares in the exponents So, 12 = 2r, or equivalently | = /2.
strongly suggest this), using the conversion ’ ’
I¥” Therefore,
dtdu = radrdo where0 <A <27,0<r < o 1 /00 _t2/2dt 1 | ’
[ e = — =
r=ve+u V2 J-co Var
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Arbitrary density functions Expectation for Standard Normal Distribution
© For any normal random variable X with parameters i and o2, ®E[Z]=0.
fx(t) is a density function.
¥ We have X = 0Z + p; standardize X by Z = X=£, o0
TETH y v Elz] - L/ te~/2 gt
Ver J-oo
1, X—pun
fx(t) = —fz(=—) 1 2
g o - \/27/ —eu dU u= 7
Since ¢ > 0, e
= _Le_tz/z‘oo
(a) 0 < fx(t) —00 < t < oo Ven —o0
R o0 1 t_ 2 2
(b) / fx(t)dt = / gfz( Uﬂ)dt ~m {e—(—M) /2 g M /2}
-0 755 / M— oo \/27 \/2771-
_ _t—p
= /OO fz(u) du u=— _ o
=1
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Properties of Normal Distributions Properties of Normal Distributions

Variance for Standard Normal Distribution Arbitrary expectation and variance
8 Var(Z)=1.
1 © o e I For any normal random variable X with parameters ;. and o2,
Var(Z) = e /_ tfe™" /= dt ® E[X] = . and © Var(X) = 2.

Integration by parts with (u = f and dv = te ), SO V e , 1% We have X = 07 + 4.

1 00 o0 Since E[Z] =0and Var(Z) =1,
Var(Z) = N [_ te—f2/2’ +/ o P2 dt] [Z] (2)
L. T EX] = EloZ+4]=oElZ)+p=p
= = / e /2 dt =1
Ve oo Var(X) = Var(oZ + p) = 02Var(Z) = o2.
The second line uses the fact that
i M M1 _ i M
YAl {_ e—M/2 e,(,,\,,)z/z} = ez T
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Example: Grading on a curve Example: Grading on a curve
e | IE" Let X be a normally distributed r.v. with parameters p and o.
xampie By standardization: Z = X>£.
Final exams at Podunk U. are constructed so that the distribution of
scores is approximately normally distributed, with parameters p (the Pluto<X} = P{1< X - u} — 1~ (1) ~ 0.1587
average score) and o (the standard deviation from the average). Letter o
grades are then assigned according to the following chart: P{u<X<p+o} = P{0< X—p <1} = d(1) — d(0) ~ 0.3413
g
Test Score Grade Plu—o<X<pyl = P{-1<X=F_q
g
po<Xx A = &(0) — d(—1) = (0) + d(1) — 1 ~ 0.3413
U< X< pu+o B X
-0 <X<p C P{u-20<X<pu—o} = P{-2< gﬂ<,1}
p-—20<x<p-o D = &(—2) — &(—1) = &(1) — d(2) ~ 0.1359
X< u— 20 F X-—pu

P{X<p—20} = P{

< -2} =1—0(2) =0.0228

g

" This system of assigning letter grades is called “grading on the curve". The probabilities can be computed from a table for the standard normal curve.
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