Functions of a Random Variable

Math 425 Introduction to Probability Lecture 21

Kenneth Harris

kaharri@umich.edu

Department of Mathematics University of Michigan

March 6, 2009

Kenneth Harris (Math 425)

Math 425 Introduction to Probability Lecture 2

March 6, 2009

Functions of a Random Variable

Functions of a Random Variable: Cumulative Distribution

Suppose we would like to compute the cumulative distribution of a random variable g(X), when we have F_X .

One theorem is all we need to know.

Theorem

Let X be a continuous random variable, and g(t) a strictly increasing function on the range of X. Let Y = g(X).

The cumulative distribution of Y is

$$F_Y(t) = F_X(g^{-1}(t)).$$

If g(x) is strictly decreasing on the range of X, then

$$F_Y(t) = 1 - F_X(g^{-1}(t)).$$

Functions of a Random Variable: Expectation

There are an overwhelming number of possible random variables which can be derived from even a single distribution, such as U, a uniformly distributed r.v., by applying a function, g(U).

It is nice to know that we need only one theorem to dispose of expectation:

Theorem

Let *X* be a continuous random variable with density f_X and $g: \mathbb{R} \to \mathbb{R}$ a continuous function (except, perhaps on finitely many points). Then

$$E[g(X)] = \int_{-\infty}^{\infty} g(t) f_X(t) dt$$

provided this integral exists.

Math 425 Introduction to Probability Lecture 2

March 6, 2009

Functions of a Random Variable

Proof

Suppose g(t) is strictly increasing. Then g is 1-1, so has an inverse (and both will be differentiable on all but a discrete set of points).

$$F_Y(t) = \mathbf{P}\{Y \le t\}$$

= $\mathbf{P}\{g(X) \le t\}$
= $\mathbf{P}\{X \le g^{-1}(t)\}$
= $F_X(g^{-1}(t))$

Suppose g(t) is strictly decreasing.

$$F_{Y}(t) = \mathbf{P} \{ Y \le t \}$$

$$= \mathbf{P} \{ g(X) \le t \}$$

$$= \mathbf{P} \{ g^{-1}(t) \le X \}$$

$$= 1 - \mathbf{P} \{ X \le g^{-1}(t) \}$$

$$= 1 - F_{X}(g^{-1}(t))$$

Functions of a Random Variable

Functions of a Random Variable: Density

A function g(t) is monotonic on its domain if it is either strictly increasing or strictly decreasing on its domain.

Theorem

Let X be a continuous random variable, and g(t) a monotonic function function on the range of X. Let Y = g(X).

The density of Y is

$$f_Y(t) = f_X(g^{-1}(t)) \cdot \left| \frac{d}{dt} g^{-1}(t) \right|.$$

Note: Compare to Ross, Theorem 5.7.1, page 243.

Math 425 Introduction to Probability Lecture 2

Functions of a Random Variable

Example: Uniform Distribution

Example. There is a uniform distribution for each interval $[\alpha, \beta]$. The only one you need to know is the uniform distribution U on [0, 1].

Let V be the uniformly distributed r.v. on $[\alpha, \beta]$. Define g(t) by

$$g(t) = (\beta - \alpha)t + \alpha$$
 so, $g^{-1}(t) = \frac{t - \alpha}{\beta - \alpha}$.

Then V = g(U):

$$t \in [0,1] \mapsto (\beta - \alpha)t + \alpha \in [\alpha, \beta]$$

- Scale by $\beta \alpha$ to $(\beta \alpha)t$.
- Shift by α to $(\beta \alpha)t + \alpha$.

Proof

Suppose g(t) is strictly increasing (so $\frac{d}{dt}g^{-1}(t) > 0$):

$$f_{Y}(t) = \frac{d}{dt}F_{Y}(t)$$

$$= \frac{d}{dt}F_{X}(g^{-1}(t))$$

$$= f_{X}(g^{-1}(t)) \cdot \left| \frac{d}{dt}g^{-1}(t) \right| \quad \text{(chain rule)}$$

Suppose g(t) is strictly decreasing (so $\frac{d}{dt}g^{-1}(t) < 0$):

$$f_Y(t) = \frac{d}{dt} F_Y(t)$$

$$= \frac{d}{dt} (1 - F_X(g^{-1}(t)))$$

$$= f_X(g^{-1}(t)) \cdot \left| \frac{d}{dt} g^{-1}(t) \right| \quad \text{(chain rule)}$$

Math 425 Introduction to Probability Lecture 2

Functions of a Random Variable

Example: Uniform Distribution

$$g(t) = (\beta - \alpha)t + \alpha$$
 $g^{-1}(t) = \frac{t - \alpha}{\beta - \alpha}$ $\frac{d}{dt}g^{-1}(t) = \frac{1}{\beta - \alpha}$

U is uniformly distributed on [0, 1].

$$F_U(t) = t$$
 $f_U(t) = 1$
 $E[V] = \frac{1}{2}$ $Var(V) = \frac{1}{12}$.

 $\nabla V = g(U)$ is uniformly distributed on $[\alpha, \beta]$.

$$F_V(t) = F_U(g^{-1}(t)) = \frac{t - \alpha}{\beta - \alpha} \qquad f_V(t) = \frac{1}{\beta - \alpha}$$

$$E[V] = E[g(t)] = \frac{(\beta - \alpha)}{2} + \alpha \qquad Var(V) = \frac{(\beta - \alpha)^2}{12}.$$

Kenneth Harris (Math 425)

Example. Let X be a continuous r.v. with known cumulative distribution F_X and density f_X . Let $Y = X^2$.

$$F_{Y}(t) = \mathbf{P} \{ Y \le t \}$$

$$= \mathbf{P} \{ -\sqrt{t} \le X \le \sqrt{t} \}$$

$$= \mathbf{P} \{ X \le \sqrt{t} \} - \mathbf{P} \{ X \le -\sqrt{t} \}$$

$$= F_{X}(\sqrt{t}) - F_{X}(-\sqrt{t})$$

$$f_{y}(t) = \frac{d}{dt}F_{y}(t)$$

$$= \frac{d}{dt}[F_{X}(\sqrt{t}) - F_{X}(-\sqrt{t})]$$

$$= [f_{X}(\sqrt{t}) + f_{X}(-\sqrt{t})] \cdot \frac{1}{2\sqrt{t}}$$

Kenneth Harris (Math 425)

Kenneth Harris (Math 425)

Math 425 Introduction to Probability Lecture 2

March 6, 2009

10 / 32

Normal Density

Center of a Normal Distribution

 $^{\text{\tiny LSP}}\mu$ provides the center of the distribution– in fact, it is the mean.

The binomial and Poisson distributions approximate a bell curve – which is the graph of the density of a normal distribution. There is a deeper reason for this – more to follow.

Normal Density

The most important density function is the normal density function.

Definition

The normal density function with parameters μ and σ^2 is defined as

$$rac{1}{\sqrt{2\pi}\sigma}e^{-(t-\mu)^2/2\sigma^2}$$
 for every $t\in\mathbb{R}$.

A random variable is said to be normally distributed with parameters μ and σ^2 , if its density function is a normal density function for some parameters μ and σ^2 .

Kenneth Harris (Math 425)

Math 425 Introduction to Probability Lecture 2

March 6, 2009

12 / 3

Normal Densi

Spread of a Normal Distribution

 σ^2 provides the spread of the distribution – in fact, it is the variance, where σ is the standard deviation.

The graphs show varying standard deviation σ .

Note that the peak value, at $\mu=0$, is $\frac{1}{\sqrt{2\pi}\sigma}$, where $\frac{1}{\sqrt{2\pi}}\approx 0.399$.

Standard Distribution

There is only one normal distribution you need to know.

Defintion. The normal random variable with parameters $\mu = 0$ and $\sigma^2 = 1$ is called the standard normal random variable, which I will write as Z (as does Ross).

$$f_Z(t) = rac{1}{\sqrt{2\pi}} e^{-t^2/2} \qquad ext{ for every } t \in \mathbb{R}.$$

The cumulative distribution for Z is written by Φ :

$$F_{Z}(a) = \Phi(a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-t^{2}/2} dt$$

Math 425 Introduction to Probability Lecture 2

March 6, 2009

Normal Density

Standardization

To calculate the cumulative distribution for a normally distributed r.v. X with parameters μ and σ^2 .

Reduce to the standard distribution:

$$F_X(a) = \mathbf{P}\{X \le a\}$$

$$= \mathbf{P}\{\sigma Z + \mu \le a\}$$

$$= \mathbf{P}\{Z \le \frac{a - \mu}{\sigma}\}$$

$$= \Phi(\frac{a - \mu}{\sigma})$$

This process of changing a normal random variable to a standard one is known as standardization.

The distribution Φ can be found in a table of values (see Ross, page 222).

Proof of equivalence

If X is a normal random variable with parameters μ and σ^2 , then

$$X = \sigma Z + \mu$$
 $Z = \frac{X - \mu}{\sigma}$.

Reason. Define g by

$$g(t) = \sigma t + \mu$$
 $g^{-1}(t) = \frac{t - \mu}{\sigma}$

Let X = g(Z). By the previous theorem

$$f_X(t) = f_Z(\frac{t-\mu}{\sigma})\frac{1}{\sigma}$$

$$= \frac{1}{\sqrt{2\pi}\sigma}e^{-(\frac{t-\mu}{\sigma})^2/2}$$

$$= \frac{1}{\sqrt{2\pi}\sigma}e^{-(t-\mu)^2/2\sigma^2}$$

Math 425 Introduction to Probability Lecture 2

Normal Density

Example

Example. Suppose X is normally distributed with parameter $\mu = 10$ and $\sigma^2 = 9$. What is **P** $\{4 < X < 16\}$.

Solution. By standardizing *X*: Z = (X - 10)/3:

$$\mathbf{P}\{4 \le X \le 16\} = \mathbf{P}\{\frac{4-10}{3} \le \frac{X-10}{3} \le \frac{16-10}{3}\}
= \Phi(2) - \Phi(-2)
= 2 \cdot \Phi(2) - 1 \approx 0.9544$$

Typically, a table gives only values of $\Phi(a)$ for a > 0.

$$\Phi(-a)=1-\Phi(a).$$

When a < 0, so that -a > 0: $\Phi(2) = 0.9772$ and $\Phi(-2) = 1 - \Phi(2) = 0.0228$.

Symmetry Normal Distribution

The standard normal distribution is symmetric around $\mu = 0$.

$$P{Z < -1} = 1 - P{Z < 1} = P{1 < Z}.$$

Kenneth Harris (Math 425

Math 425 Introduction to Probability Lecture 2

March 6, 2009

19 / 32

Properties of Normal Distributions

Three little facts

This section is dedicated to proving three facts about the standard normal random variable Z.

- \bullet $f_Z(t)$ is a probability density function.
- ② E[Z] = 0.
- **3** Var(Z) = 1.

It follows that for any normal random variable X with parameters μ and σ^2

- \bullet $f_X(t)$ is a probability density function.
- **2** $E[X] = \mu$.
- **3** $Var(X) = \sigma^2$.

Symmetry of Normal Distribution

The normal distribution Φ is symmetric about $\mu = 0$.

$$\Phi(-a) = 1 - \Phi(a)$$
 $-\infty < a < \infty$.

Reason. Key is to use change of variables (line 2)

$$\Phi(-a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{-a} e^{-t^2/2} dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{\infty}^{a} -e^{-(-u)^2/2} du \quad \text{let } u = -t$$

$$= \frac{1}{\sqrt{2\pi}} \int_{a}^{\infty} e^{-u^2/2} du$$

$$= \mathbf{P} \{ a < Z \} = 1 - \mathbf{P} \{ Z \le a \}$$

$$= 1 - \Phi(a).$$

Kenneth Harris (Math 425)

Math 425 Introduction to Probability Lecture 2

March 6, 2009

20.72

Properties of Normal Distributions

Standard density functions

• Let Z be the standard r.v. The function

$$f_Z(t) = \frac{1}{\sqrt{2\pi}}e^{-t^2/2}$$

is a probability density function.

- (a). It is clear that $f_Z(t) \ge 0$ for all real numbers t.
- (b). We must show

$$1=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-t^2/2}\,dt$$

The problem is that the function $\int e^{-t^2/2}$ cannot be evaluated in terms of elementary functions, like you can with other familiar functions from Calculus.

Standard density functions

Instead we compute I, where

$$I=\int_{-\infty}^{\infty}e^{-t^2/2},$$

by computing l^2 and converting to double integral form

$$f^{2} = \left(\int_{-\infty}^{\infty} e^{-t^{2}/2} dt \right) \left(\int_{-\infty}^{\infty} e^{-u^{2}/2} du \right)$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(t^{2}+u^{2})/2} dt du$$

Convert to polar coordinates (the sum of squares in the exponents strongly suggest this), using the conversion

$$ext{dt du} = r \, ext{dr d} ext{d} ext{where } 0 \leq heta < 2\pi, 0 \leq r < \infty$$
 $r = \sqrt{t^2 + u^2}$

Math 425 Introduction to Probability Lecture 2

Properties of Normal Distributions

Arbitrary density functions

- For any normal random variable X with parameters μ and σ^2 , $f_X(t)$ is a density function.
- We have $X = \sigma Z + \mu$; standardize X by $Z = \frac{X \mu}{\sigma}$.

$$f_X(t) = \frac{1}{\sigma} f_Z(\frac{X-\mu}{\sigma})$$

Since $\sigma > 0$,

(a)
$$0 \le f_X(t)$$
 $-\infty < t < \infty$
(b) $\int_{-\infty}^{\infty} f_X(t) dt = \int_{-\infty}^{\infty} \frac{1}{\sigma} f_Z(\frac{t-\mu}{\sigma}) dt$
 $= \int_{-\infty}^{\infty} f_Z(u) du \qquad u = \frac{t-\mu}{\sigma}$
 $= 1$

Standard density functions

$$f^{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(t^{2}+u^{2})/2} dt du$$

$$= \int_{0}^{2\pi} \int_{0}^{\infty} e^{-r^{2}/2} r dr d\theta$$

$$= 2\pi \int_{0}^{\infty} e^{-r^{2}/2} r dr \qquad s = -r^{2}/2, ds = -r dr$$

$$= 2\pi \left(-e^{-r^{2}/2} \right) \Big|_{0}^{\infty} = 2\pi$$

So, $I^2 = 2\pi$, or equivalently $I = \sqrt{2\pi}$.

Therefore.

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-t^2/2} dt = \frac{1}{\sqrt{2\pi}} I = 1$$

Math 425 Introduction to Probability Lecture 2

Properties of Normal Distributions

Expectation for Standard Normal Distribution

2 E[Z] = 0.

$$E[Z] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} t e^{-t^2/2} dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} -e^u du \qquad u = \frac{-t^2}{2}$$

$$= -\frac{1}{\sqrt{2\pi}} e^{-t^2/2} \Big|_{-\infty}^{\infty}$$

$$= \lim_{M \to \infty} \left[\frac{e^{-(-M)^2/2}}{\sqrt{2\pi}} - \frac{e^{-M^2/2}}{\sqrt{2\pi}} \right]$$

$$= 0.$$

Variance for Standard Normal Distribution

2 Var(Z) = 1.

$$Var(Z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} t^2 e^{-t^2/2} dt$$

Integration by parts with $(u = t \text{ and } dv = te^{-t^2/2})$, so $v = -e^{-t^2/2}$.

$$Var(Z) = \frac{1}{\sqrt{2\pi}} \left[-te^{-t^2/2} \Big|_{-\infty}^{\infty} + \int_{-\infty}^{\infty} e^{-t^2/2} dt \right]$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-t^2/2} dt = 1$$

The second line uses the fact that

$$\lim_{M \to \infty} \Big[- \frac{M}{e^{-M^2/2}} - \frac{M}{e^{-(-M)^2/2}} \Big] = \lim_{M \to \infty} \frac{-2M}{e^{M^2/2}} = 0.$$

Math 425 Introduction to Probability Lecture 2

Example: Grading on a curve

Example

Final exams at Podunk U. are constructed so that the distribution of scores is approximately normally distributed, with parameters μ (the average score) and σ (the standard deviation from the average). Letter grades are then assigned according to the following chart:

Test Score	Grade
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Α
$\mu < \mathbf{X} < \mu + \sigma$	В
$\mu - \sigma < \mathbf{X} < \mu$	С
$\mu - 2\sigma < x < \mu - \sigma$	D
$\mathbf{X} < \mu - 2\sigma$	F

This system of assigning letter grades is called "grading on the curve".

Arbitrary expectation and variance

For any normal random variable X with parameters μ and σ^2 . **2** $E[X] = \mu$ and **3** $Var(X) = \sigma^2$.

We have
$$X = \sigma Z + \mu$$
.
Since $E[Z] = 0$ and $Var(Z) = 1$,

$$E[X] = E[\sigma Z + \mu] = \sigma E[Z] + \mu = \mu$$

$$Var(X) = Var(\sigma Z + \mu) = \sigma^2 Var(Z) = \sigma^2.$$

Math 425 Introduction to Probability Lecture 2

Example: Grading on a curve

Let X be a normally distributed r.v. with parameters μ and σ . By standardization: $Z = \frac{X - \mu}{\sigma}$.

$$\begin{aligned} \mathbf{P} \{ \mu + \sigma < X \} &= \mathbf{P} \{ 1 < \frac{X - \mu}{\sigma} \} = 1 - \Phi(1) \approx 0.1587 \\ \mathbf{P} \{ \mu < X < \mu + \sigma \} &= \mathbf{P} \{ 0 < \frac{X - \mu}{\sigma} < 1 \} = \Phi(1) - \Phi(0) \approx 0.3413 \\ \mathbf{P} \{ \mu - \sigma < X < \mu \} &= \mathbf{P} \{ -1 < \frac{X - \mu}{\sigma} < 0 \} \\ &= \Phi(0) - \Phi(-1) = \Phi(0) + \Phi(1) - 1 \approx 0.3413 \\ \mathbf{P} \{ \mu - 2\sigma < X < \mu - \sigma \} &= \mathbf{P} \{ -2 < \frac{X - \mu}{\sigma} < -1 \} \\ &= \Phi(-2) - \Phi(-1) = \Phi(1) - \Phi(2) \approx 0.1359 \\ \mathbf{P} \{ X < \mu - 2\sigma \} &= \mathbf{P} \{ \frac{X - \mu}{\sigma} < -2 \} = 1 - \Phi(2) = 0.0228 \end{aligned}$$

The probabilities can be computed from a table for the standard normal curve.