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Functions of a Random Variable

Functions of a Random Variable: Expectation

� There are an overwhelming number of possible random variables
which can be derived from even a single distribution, such as U, a
uniformly distributed r.v., by applying a function, g(U).

It is nice to know that we need only one theorem to dispose of
expectation:

Theorem
Let X be a continuous random variable with density fX and g : R→ R a
continuous function (except, perhaps on finitely many points). Then

E [g(X )] =

∫ ∞
−∞

g(t)fX (t) dt

provided this integral exists.
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Functions of a Random Variable

Functions of a Random Variable: Cumulative
Distribution

� Suppose we would like to compute the cumulative distribution of a
random variable g(X ), when we have FX .

One theorem is all we need to know.

Theorem
Let X be a continuous random variable, and g(t) a strictly increasing
function on the range of X . Let Y = g(X ).

The cumulative distribution of Y is

FY (t) = FX (g−1(t)).

If g(x) is strictly decreasing on the range of X , then

FY (t) = 1− FX (g−1(t)).
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Functions of a Random Variable

Proof
Suppose g(t) is strictly increasing. Then g is 1-1, so has an inverse (and both
will be differentiable on all but a discrete set of points).

FY (t) = P {Y ≤ t}
= P {g(X ) ≤ t}
= P {X ≤ g−1(t)}
= FX (g−1(t))

Suppose g(t) is strictly decreasing.

FY (t) = P {Y ≤ t}
= P {g(X ) ≤ t}
= P {g−1(t) ≤ X}
= 1− P {X ≤ g−1(t)}
= 1− FX (g−1(t))
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Functions of a Random Variable

Functions of a Random Variable: Density

� A function g(t) is monotonic on its domain if it is either strictly
increasing or strictly decreasing on its domain.

Theorem
Let X be a continuous random variable, and g(t) a monotonic function
function on the range of X . Let Y = g(X ).

The density of Y is

fY (t) = fX
(
g−1(t)

)
·
∣∣∣ d
dt

g−1(t)
∣∣∣.

Note: Compare to Ross, Theorem 5.7.1, page 243.
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Functions of a Random Variable

Proof
Suppose g(t) is strictly increasing (so d

dt g
−1(t) > 0):

fY (t) =
d
dt

FY (t)

=
d
dt

FX (g−1(t))

= fX
(
g−1(t)

)
·
∣∣ d
dt

g−1(t)
∣∣ (chain rule)

Suppose g(t) is strictly decreasing (so d
dt g
−1(t) < 0):

fY (t) =
d
dt

FY (t)

=
d
dt
(
1− FX (g−1(t))

)
= fX

(
g−1(t)

)
·
∣∣ d
dt

g−1(t)
∣∣ (chain rule)
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Functions of a Random Variable

Example: Uniform Distribution

Example. There is a uniform distribution for each interval [α, β].
The only one you need to know is the uniform distribution U on [0,1].

� Let V be the uniformly distributed r.v. on [α, β].
Define g(t) by

g(t) = (β − α)t + α so, g−1(t) =
t − α
β − α

.

Then V = g(U):
t ∈ [0,1] 7→ (β − α)t + α ∈ [α, β]

1 Scale by β − α to (β − α)t .
2 Shift by α to (β − α)t + α.
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Functions of a Random Variable

Example: Uniform Distribution

g(t) = (β − α)t + α g−1(t) =
t − α
β − α

d
dt

g−1(t) =
1

β − α

� U is uniformly distributed on [0,1].

FU(t) = t fU(t) = 1

E [V ] =
1
2

Var(V ) =
1
12
.

� V = g(U) is uniformly distributed on [α, β].

FV (t) = FU(g−1(t)) =
t − α
β − α

fV (t) =
1

β − α

E [V ] = E [g(t)] =
(β − α)

2
+ α Var(V ) =

(β − α)2

12
.
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Functions of a Random Variable

� Even if g is not strictly increasing or decreasing, we can often apply the
same technique (although the situation may be more complicated).

Example. Let X be a continuous r.v. with known cumulative
distribution FX and density fX . Let Y = X 2.

FY (t) = P {Y ≤ t}
= P {−

√
t ≤ X ≤

√
t}

= P {X ≤
√

t} − P {X ≤ −
√

t}
= FX (

√
t)− FX (−

√
t)

fy (t) =
d
dt

Fy (t)

=
d
dt
[
FX (
√

t)− FX (−
√

t)
]

=
[
fx (
√

t) + fx (−
√

t)
]
· 1

2
√

t
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Normal Density

Normal Density

� The most important density function is the normal density function.

Definition

The normal density function with parameters µ and σ2 is defined as

1√
2πσ

e−(t−µ)2/2σ2
for every t ∈ R.

A random variable is said to be normally distributed with parameters µ
and σ2, if its density function is a normal density function for some
parameters µ and σ2.
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Normal Density

Center of a Normal Distribution

� µ provides the center of the distribution– in fact, it is the mean.

Μ=0 Μ=1 Σ=1
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0.2

0.3

0.4

� The binomial and Poisson distributions approximate a bell curve – which is
the graph of the density of a normal distribution. There is a deeper reason for
this – more to follow.
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Normal Density

Spread of a Normal Distribution
� σ2 provides the spread of the distribution – in fact, it is the variance, where
σ is the standard deviation.

The graphs show varying standard deviation σ.
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� Note that the peak value, at µ = 0, is 1√
2πσ

, where 1√
2π
≈ 0.399.
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Normal Density

Standard Distribution

� There is only one normal distribution you need to know.

Defintion. The normal random variable with parameters µ = 0 and
σ2 = 1 is called the standard normal random variable, which I will write
as Z (as does Ross).

fZ (t) =
1√
2π

e−t2/2 for every t ∈ R.

The cumulative distribution for Z is written by Φ:

FZ (a) = Φ(a) =
1√
2π

∫ a

−∞
e−t2/2 dt
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Normal Density

Proof of equivalence

� If X is a normal random variable with parameters µ and σ2, then

X = σZ + µ Z =
X − µ
σ

.

Reason. Define g by

g(t) = σt + µ g−1(t) =
t − µ
σ

Let X = g(Z ). By the previous theorem

fX (t) = fZ (
t − µ
σ

)
1
σ

=
1√
2πσ

e−( t−µ
σ

)2/2

=
1√
2πσ

e−(t−µ)2/2σ2
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Normal Density

Standardization

� To calculate the cumulative distribution for a normally distributed r.v.
X with parameters µ and σ2.

Reduce to the standard distribution:

FX (a) = P {X ≤ a}
= P {σZ + µ ≤ a}

= P {Z ≤ a− µ
σ
}

= Φ(
a− µ
σ

)

This process of changing a normal random variable to a standard one
is known as standardization.

� The distribution Φ can be found in a table of values (see Ross, page 222).
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Normal Density

Example

Example. Suppose X is normally distributed with parameter µ = 10
and σ2 = 9. What is P {4 ≤ X ≤ 16}.

Solution. By standardizing X : Z = (X − 10)/3:

P {4 ≤ X ≤ 16} = P {4− 10
3

≤ X − 10
3

≤ 16− 10
3

}

= Φ(2)− Φ(−2)

= 2 · Φ(2)− 1 ≈ 0.9544

� Typically, a table gives only values of Φ(a) for a > 0.

Φ(−a) = 1− Φ(a).

When a < 0, so that −a > 0:
Φ(2) = 0.9772 and Φ(−2) = 1− Φ(2) = 0.0228.
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Normal Density

Symmetry Normal Distribution

� The standard normal distribution is symmetric around µ = 0.
P {Z < −1} = 1− P {Z < 1} = P {1 < Z}.

-4 -2 2 4

0.1

0.2

0.3

0.4

Kenneth Harris (Math 425) Math 425 Introduction to Probability Lecture 21 March 6, 2009 19 / 32

Normal Density

Symmetry of Normal Distribution
� The normal distribution Φ is symmetric about µ = 0.

Φ(−a) = 1− Φ(a) −∞ < a <∞.

Reason. Key is to use change of variables (line 2)

Φ(−a) =
1√
2π

∫ −a

−∞
e−t2/2 dt

=
1√
2π

∫ a

∞
−e−(−u)2/2 du let u = −t

=
1√
2π

∫ ∞
a

e−u2/2 du

= P {a < Z} = 1− P {Z ≤ a}
= 1− Φ(a).
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Properties of Normal Distributions

Three little facts

� This section is dedicated to proving three facts about the standard
normal random variable Z .

1 fZ (t) is a probability density function.
2 E [Z ] = 0.
3 Var(Z ) = 1.

� It follows that for any normal random variable X with parameters µ
and σ2

1 fX (t) is a probability density function.
2 E [X ] = µ.
3 Var(X ) = σ2.
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Properties of Normal Distributions

Standard density functions

Ê Let Z be the standard r.v. The function

fZ (t) =
1√
2π

e−t2/2

is a probability density function.

(a). It is clear that fZ (t) ≥ 0 for all real numbers t .

(b). We must show

1 =
1√
2π

∫ ∞
−∞

e−t2/2 dt

The problem is that the function
∫

e−t2/2 cannot be evaluated in terms of
elementary functions, like you can with other familar functions from Calculus.
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Properties of Normal Distributions

Standard density functions
� Instead we compute I, where

I =

∫ ∞
−∞

e−t2/2,

by computing I2 and converting to double integral form

I2 =
(∫ ∞
−∞

e−t2/2 dt
)(∫ ∞

−∞
e−u2/2 du

)
=

∫ ∞
−∞

∫ ∞
−∞

e−(t2+u2)/2 dt du

� Convert to polar coordinates (the sum of squares in the exponents
strongly suggest this), using the conversion

dt du = r dr dθ where 0 ≤ θ < 2π,0 ≤ r <∞
r =

√
t2 + u2
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Properties of Normal Distributions

Standard density functions

I2 =

∫ ∞
−∞

∫ ∞
−∞

e−(t2+u2)/2 dt du

=

∫ 2π

0

∫ ∞
0

e−r2/2r dr dθ

= 2π
∫ ∞

0
e−r2/2r dr s = −r2/2, ds = −r dr

= 2π
(
− e−r2/2

)∣∣∣∞
0

= 2π

So, I2 = 2π, or equivalently I =
√

2π.

� Therefore,
1√
2π

∫ ∞
−∞

e−t2/2 dt =
1√
2π

I = 1
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Properties of Normal Distributions

Arbitrary density functions

Ê For any normal random variable X with parameters µ and σ2,
fX (t) is a density function.

�We have X = σZ + µ; standardize X by Z = X−µ
σ .

fX (t) =
1
σ

fZ
(X − µ

σ

)
Since σ > 0,

(a) 0 ≤ fX (t) −∞ < t <∞

(b)

∫ ∞
−∞

fX (t) dt =

∫ ∞
−∞

1
σ

fZ
( t − µ

σ

)
dt

=

∫ ∞
−∞

fZ (u) du u =
t − µ
σ

= 1
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Properties of Normal Distributions

Expectation for Standard Normal Distribution

Ë E [Z ] = 0 .

E [Z ] =
1√
2π

∫ ∞
−∞

te−t2/2 dt

=
1√
2π

∫ ∞
−∞
−eu du u =

−t2

2

= − 1√
2π

e−t2/2
∣∣∣∞
−∞

= lim
M→∞

[e−(−M)2/2
√

2π
− e−M2/2
√

2π

]
= 0.
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Properties of Normal Distributions

Variance for Standard Normal Distribution

Ë Var(Z ) = 1 .

Var(Z ) =
1√
2π

∫ ∞
−∞

t2e−t2/2 dt

Integration by parts with (u = t and dv = te−t2/2), so v = −e−t2/2,

Var(Z ) =
1√
2π

[
− te−t2/2

∣∣∣∞
−∞

+

∫ ∞
−∞

e−t2/2 dt

]

=
1√
2π

∫ ∞
−∞

e−t2/2 dt = 1

The second line uses the fact that

lim
M→∞

[
− M

e−M2/2
− M

e−(−M)2/2

]
= lim

M→∞

−2M
eM2/2

= 0.
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Properties of Normal Distributions

Arbitrary expectation and variance

� For any normal random variable X with parameters µ and σ2,
Ë E [X ] = µ and Ì Var(X ) = σ2.

�We have X = σZ + µ.
Since E [Z ] = 0 and Var(Z ) = 1,

E [X ] = E [σZ + µ] = σE [Z ] + µ = µ

Var(X ) = Var(σZ + µ) = σ2Var(Z ) = σ2.
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Examples

Example: Grading on a curve

Example
Final exams at Podunk U. are constructed so that the distribution of
scores is approximately normally distributed, with parameters µ (the
average score) and σ (the standard deviation from the average). Letter
grades are then assigned according to the following chart:

Test Score Grade
µ+ σ < x A

µ < x < µ+ σ B
µ− σ < x < µ C

µ− 2σ < x < µ− σ D
x < µ− 2σ F

� This system of assigning letter grades is called “grading on the curve".
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Examples

Example: Grading on a curve

� Let X be a normally distributed r.v. with parameters µ and σ.
By standardization: Z = X−µ

σ .

P {µ+ σ < X} = P {1 < X − µ
σ
} = 1− Φ(1) ≈ 0.1587

P {µ < X < µ+ σ} = P {0 < X − µ
σ

< 1} = Φ(1)− Φ(0) ≈ 0.3413

P {µ− σ < X < µ} = P {−1 <
X − µ
σ

< 0}

= Φ(0)− Φ(−1) = Φ(0) + Φ(1)− 1 ≈ 0.3413

P {µ− 2σ < X < µ− σ} = P {−2 <
X − µ
σ

< −1}

= Φ(−2)− Φ(−1) = Φ(1)− Φ(2) ≈ 0.1359

P {X < µ− 2σ} = P {X − µ
σ

< −2} = 1− Φ(2) = 0.0228

The probabilities can be computed from a table for the standard normal curve.
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