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Bernoulli trials

Bernoulli Trials

Definition
By a Bernoulli trials process, we mean a sequence of trials (repetitions
of an experiment) satisfying the following

1 Only two possible mutually exclusive outcomes on each trial.
One arbitrarily called success and the other failure.

2 The probability of success on each trial is the same for each trial.
3 The trials are independent.
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Bernoulli trials

Examples of Bernoulli Trials

Examples. The following are examples of Bernoulli trials:
Flip a coin (heads, tails),
Each computer chip in a production line tested (chip passes test,
fails test),
Rolling a pair of dice for “snake-eyes" (double ones, any other
value),
A patient is prescribed a drug treatment (cured, not cured).
A monkey types the complete works of Shakespeare (success,
failure).
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Bernoulli trials

Random Variables and Bernoulli trials

� There are several discrete random variables associated with
counting various events in a Bernoulli trials process.

Binomial random variable: the number of successes in n trials.
 The possible values are integers between 0 and n.

Geometric random variable: the number of trials until the first
success.
 The possible values are all nonnegative integers (where the

value 0 means success never occurs).
Negative binomial random variable: the number of trials until k
successes.
 The possible values are all nonnegative integers (where the

value 0 means success never occurs).
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Binomial Random Variables

Counting success

� In many applications we perform a fixed number n of Bernoulli
trials. We would like to know the probability of k successes for various
values k ≤ n.

A coin is flipped n times. What is the chance of exactly k heads?
You have n widgets. What is the chance that k are defective?
You type a page of n symbols. What is the chance of k errors?
You place n bets on red in roulette. What is the chance you win k
times?
A gene consists of n base pairs. What is the chance that there are
k mutations?

� The underlying problem in each case is the same. The only relevant
things that change are the number of trials n, the probability of success
p and the number k of successes.
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Binomial Random Variables

Binomial Random Variable

� Consider a Bernoulli trials process consisting of n trials, with
probability of success p and failure q = 1− p.

Let B be the random variable counting the number of successes.

For 0 ≤ k ≤ n there are (
n
k

)
sequences of length n consisting of exactly k successes, and each

has the same probability
pk qn−k .

So,

P {B = k} =

(
n
k

)
pk qn−k 0 ≤ k ≤ n.
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Binomial Random Variables

Binomial Random Variable

Definition
Let 0 < p < 1 and q = 1− p and k > 0. We say a random variable B is
a binomial random variable (with parameters p and n) if

P {B = k} =

(
n
k

)
pkqn−k 0 ≤ k ≤ n.

A random variable which counts the number of successes in a
sequence of n Bernoulli trials is a binomial random variable.
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Binomial Random Variables

Binomial Random Variable

� Let B be a binomial random variable with parameters p and n.
Since the events {B = k} are mutually exclusive

P {0 ≤ B ≤ n} =
n∑

k=0

P {B = k}

=
n∑

k=0

(
n
k

)
pkqn−k

= (p + q)n = 1

The last line is the Binomial Theorem, Ross p. 8.
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Binomial Random Variables

Binomial distribution

� Three distributions with fixed n = 50 and varying p = 0.3,0.5,0.8.
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Binomial Random Variables

Binomial distribution

� Three distributions with varying n = 40,60,80 and fixed p = 0.5.
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Binomial Random Variables

Mean and Variance

Theorem
Let B be a binomial random variable with parameter p, where
0 < p < 1.

The mean and variance of B are given by

E [B] = np

Var(B) = np(1− p)
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Binomial Random Variables

Binomial distribution
� Binomial random variable B with parameters p = 1

2 and n = 50.

E [B] = 25 Var(B) = 50
4 SD(B) ≈ 3.5 P {22 ≤ B ≤ 28} ≈ 0.68.
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Note that the distribution is close to symmetric around its peak value.
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Binomial Random Variables

Binomial distribution

� Statistics for a Binomial random variables with n = 50 and varying p.

p µ = E [B] Var(B) σ = SD(B) P {µ− σ ≤ B ≤ µ+ σ}

0.1 5 4.5 2.12 0.766

0.25 12.5 9.375 3.06 0.745

0.5 25 12.5 3.5 0.678

0.75 37.5 9.375 3.06 0.738

0.9 45 4.5 2.12 0.766
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Binomial Random Variables

Binomial distribution

Example. Acme Widgets sells their widgets in packs of 5 and
guarantees that no more than one widget is defective. If a widget is
defective with probability p = 0.1 what is the probability that a pack will
be returned?

Solution. Let B be the binomial random variable counting defective
widgets in a pack of 5. Then,

1− P {B ≤ 1} = 1− P {B = 0} − P {B = 1}

= 1−
(

5
0

)
(0.9)5 −

(
5
1

)
(0.1)(0.9)4

≈ 0.081.
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Means of Discrete Random Variables

Discrete Random Variable

� A random variable X is discrete if there is an enumeration of all
possible values X can take: y1, y2, y3, . . ., so that whenever
P {X = y} > 0 there is some i with y = yi .

�We want to define the expected value of a discrete random variable
as

E [X ] =
∑

i

yi · P {X = yi},

where y1, y2, . . . lists the possible values X can take.
A Warning: We need to make sure this makes sense for infinite

discrete random variables!!
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Means of Discrete Random Variables

Discrete Random Variable

� If X takes only finitely many possible values y1, y2, . . . , yn, then

E [X ] =
∑

i

yi · P {X = yi}

always is well defined.

� If X can take infinitely many possible values y1, y2, . . ., then

E [X ] =
∑

i

yi · P {X = yi}

may not be well defined because either (i) it does not converge or (ii)
its value depends on the order of the summation.
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Means of Discrete Random Variables

Discrete Random Variable

Example. Let X be the random variable with the following probability
mass function:

pX (n) =
c
n2 where c =

6
π2 and n ≥ 1,

so that ∑
n

pX (n) = c
∑

n

1
n2 = c · π

2

6
= 1.

However,

E [X ] =
∑

n

n · pX (n) = c
∑

n

1
n

=∞

The sum is the harmonic series, which diverges.
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Means of Discrete Random Variables

Discrete Random Variable

Example. Let X be the random variable with the following probability
mass function:

pX
(
(−1)n+1n

)
=

c
n2 where c =

6
π2 and n ≥ 1,

So,

E [X ] =
∑

n

(−1)n+1n · pX (n) = c
∑

n

(−1)n+1

n
= c ln 2

The problem is that this series is only conditionally convergent, and
what it converges to depends upon the order of the summation:

1− 1
2

+
1
3
− 1

4
+

1
5
− 1

6
+ . . . <

5
6

1 +
1
3
− 1

2
+

1
5

+
1
7
− 1

4
+ . . . ≥ 5

6
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Means of Discrete Random Variables

Discrete Random Variable

Definition
Let X be a discrete random variable which takes possible values
y1, y2, . . . and has probability mass function pX .

The expected value (or mean) of X is defined by

E [X ] =
∑

i

yi · pX (yi)

provided this sum converges absolutely:∑
i

|yi | · pX (yi) converges.
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Geometric Random Variable

Geometric Random Variable

� Consider a Bernoulli trials process, with probability of success p
and failure q = 1− p, which we continue until the first success.

Let T be the number of trials up to and including the first success.
Then

P {T = n} = qn−1p when n ≥ 1

� Since the events {T = n} are mutually exclusive

P {T ≥ 1} =
∞∑

n=0

qnp =
p

1− q
=

p
p

= 1,

and so
P {T = 0} = 1− P {T ≥ 1} = 1− 1 = 0

{T = 0} when all trials result in failure.
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Geometric Random Variable

Geometric Random Variable

Definition
Let 0 < p < 1 and q = 1− p. We say a random variable T is a
geometric random variable (with parameter p) if

P {X = n} = qn−1p n = 1,2,3, . . .

A random variable which counts the number of trials until the first
success in a Bernoulli trials process is a geometric random variable.
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Geometric Random Variable

Geometric distributions

� Distributions for geometric random variables with p = 0.2,0.5.
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� Note that the most probable value is {T = 1}, and the values decrease
rapidly as n increases.

Kenneth Harris (Math 425) Math 425 Introduction to Probability Lecture 16 February 16, 2009 26 / 1

Geometric Random Variable

Mean and Variance

� The mean of a geometric random variable T with parameter p is

E [T ] =
∞∑

n=1

n · (1− p)n−1p,

which converges absolutely.

Theorem
Let T be a geometric random variable with parameter p, where
0 < p < 1. The mean and variance of T are

E [T ] =
1
p

Var(T ) =
1− p

p2
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Geometric Random Variable

Values for some distributions

p µ = E [T ] Var(T ) σ = SD(T ) P {µ− σ ≤ T ≤ µ+ σ}

1
6 6 30 5.477 0.865

1
4 4 12 3.464 0.867

1
3 3 6 2.45 0.868

1
2 2 2 1.414 0.875

2
3 1.5 0.75 0.866 0.889

3
4 1.33 0.444 0.667 0.9375
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Geometric Random Variable

Examples

Example. A lottery chooses a number between 1 and 100 at random
each week. What is the expected number of weeks between
successive draws of the number 50?

Solution Let T be the geometric random variable which counts the
weeks between successive draws of 50.

Since p = 0.01, the expected number of weeks is

E [T ] =
1
p

= 100.
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Negative Binomial Random Variables

Negative Binomial Random Variable

� Consider a Bernoulli trials process, with probability of success p
and failure q = 1− p, which we continue until k successes (where
k > 0).

Let Xk be the number of trials up to and including the k success.
For n ≥ k , Xk = n exactly when there are k − 1 successes in the first
n − 1 trials, and the last trial is a success.

There are (
n − 1
k − 1

)
such sequences of length n and each has the same probability

pk qn−k .

Therefore

P {Xk = n} =

(
n − 1
k − 1

)
pk qn−k n = k , k + 1, k + 2, . . .
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Negative Binomial Random Variables

Negative Binomial Random Variable

Definition
Let 0 < p < 1 and q = 1− p and k > 0. We say a random variable X
is a negative binomial random variable (with parameters p and k ) if

P {X = n} =

(
n − 1
k − 1

)
pkqn−k n = k , k + 1, k + 2, . . .

A random variable which counts the number of trials until the k th
success in a Bernoulli trials process is a negative random variable.

When k = 1, this is the same as a geometric random variable.

Kenneth Harris (Math 425) Math 425 Introduction to Probability Lecture 16 February 16, 2009 32 / 1

Negative Binomial Random Variables

Negative Binomial distribution

� Distribution for negative binomial random variables with p = 1
3 and k = 10.
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Negative Binomial Random Variables

Negative Binomial distribution

� Distribution for negative binomial random variables with p = 0.3,0.5 and
k = 10.
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Negative Binomial Random Variables

Mean and Variance

� The mean of a negative random variable X with parameters p and k
is

E [X ] =
∞∑

n=k

n ·
(

n
k

)
pk (1− p)n−k ,

which converges absolutely.

Theorem
Let X be a negative binomial random variable with parameters p,
where 0 < p < 1 and k > 0. The mean and variance of X are

E [X ] =
k
p

Var(X ) =
k(1− p)

p2
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Negative Binomial Random Variables

Values for some distributions

� Negative Binomial Random Variable with k = 2 and various p

p µ = E [X ] Var(X ) σ = SD(X ) P {µ− σ ≤ X ≤ µ+ σ}

1
6 12 60 7.75 0.796

1
4 8 24 4.9 0.958

1
3 6 12 3.46 0.941

1
2 4 4 2 0.891

2
3 3 1.5 1.225 0.889

3
4 2.66 0.889 0.942 0.844
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Negative Binomial Random Variables

Example

Example. What is the probability of k successes before ` failures in a
Bernoulli trials process with probability p?

Solution. If k successes comes before ` failures, then the k success
must occur on some trial n with k ≤ n < k + `.

Let X count the number of trials before the k th success. Then

P {k ≤ X < k + `} =
k+`−1∑

n=k

(
n − 1
k − 1

)
pk (1− p)n−k .
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