Math 425 Introduction to Probability Lecture 16	Definition By a Bernoulli trials process, we mean a sequence of trials (repetitions
Kenneth Harris kaharri@umich.edu	 of an experiment) satisfying the following Only two possible mutually exclusive outcomes on each trial. One arbitrarily called success and the other failure.
Department of Mathematics University of Michigan	 The probability of success on each trial is the same for each trial. The trials are independent.
February 16, 2009	

Bernoulli Trials

Kenneth Harris (Math 425)

Examples.	The following a	are examples	of Bernoulli trials:

Bernoulli trials

• Flip a coin (heads, tails),

Examples of Bernoulli Trials

Kenneth Harris (Math 425)

• Each computer chip in a production line tested (chip passes test, fails test),

Math 425 Introduction to Probability Lecture 1

- Rolling a pair of dice for "snake-eyes" (double ones, any other value),
- A patient is prescribed a drug treatment (cured, not cured).
- A monkey types the complete works of Shakespeare (success, failure).

Bernoulli trials

Math 425 Introduction to Probability Lecture

Bernoulli trials

Random Variables and Bernoulli trials

There are several discrete random variables associated with counting various events in a Bernoulli trials process.

- Binomial random variable: the number of successes in *n* trials.
 The possible values are integers between 0 and *n*.
- Geometric random variable: the number of trials until the first success.

The possible values are all nonnegative integers (where the value 0 means success never occurs).

• Negative binomial random variable: the number of trials until *k* successes.

The possible values are all nonnegative integers (where the value 0 means success never occurs).

February 16, 2009

1/1

February 16, 2009

Binomial Random Variables

Counting success

In many applications we perform a fixed number *n* of Bernoulli trials. We would like to know the probability of *k* successes for various values $k \le n$.

- A coin is flipped *n* times. What is the chance of exactly *k* heads?
- You have *n* widgets. What is the chance that *k* are defective?
- You type a page of *n* symbols. What is the chance of *k* errors?
- You place *n* bets on red in roulette. What is the chance you win *k* times?
- A gene consists of *n* base pairs. What is the chance that there are *k* mutations?

The underlying problem in each case is the same. The only relevant things that change are the number of trials n, the probability of success p and the number k of successes.

Math 425 Introduction to Probability Lecture 1

Binomial Random Variable

Consider a Bernoulli trials process consisting of *n* trials, with probability of success *p* and failure q = 1 - p.

Let *B* be the random variable counting the number of successes.

For $0 \le k \le n$ there are

 $\binom{n}{k}$

sequences of length *n* consisting of exactly *k* successes, and each has the same probability $p^k a^{n-k}$.

So,

$$\mathbf{P}\left\{B=k\right\} = \binom{n}{k} p^k q^{n-k} \qquad 0 \le k \le n.$$

Kenneth Harris (Math 425)

Math 425 Introduction to Probability Lecture

February 16, 2009 8 / 1

Binomial Random Variables

Binomial Random Variable

Kenneth Harris (Math 425)

Definition

Let 0 and <math>q = 1 - p and k > 0. We say a random variable *B* is a binomial random variable (with parameters *p* and *n*) if

$$\mathbf{P}\left\{B=k\right\} = \binom{n}{k}p^{k}q^{n-k} \qquad 0 \le k \le n.$$

A random variable which counts the number of successes in a sequence of *n* Bernoulli trials is a binomial random variable.

Binomial Random Variable

Ρ

Even the events $\{B = k\}$ are mutually exclusive

Binomial Random Variables

$$\{0 \le B \le n\} = \sum_{k=0}^{n} \mathbf{P} \{B = k\}$$
$$= \sum_{k=0}^{n} {n \choose k} p^{k} q^{n-k}$$
$$= (p+q)^{n} = 1$$

The last line is the Binomial Theorem, Ross p. 8.

February 16, 2009

Binomial distribution

Three distributions with fixed n = 50 and varying p = 0.3, 0.5, 0.8.

Math 425 Introduction to Probability Lecture

Binomial distribution

^{KP} Three distributions with varying n = 40,60,80 and fixed p = 0.5.

Math 425 Introduction to Probability Lecture

Binomial Random Variables

Mean and Variance

Kenneth Harris (Math 425)

Theorem

Let B be a binomial random variable with parameter p, where 0 .

The mean and variance of B are given by

E[B] = np

$$Var(B) = np(1-p)$$

Binomial Random Variables

Binomial distribution

Kenneth Harris (Math 425)

Binomial random variable *B* with parameters $p = \frac{1}{2}$ and n = 50.

E[B] = 25 $Var(B) = \frac{50}{4}$ $SD(B) \approx 3.5$ $P\{22 \le B \le 28\} \approx 0.68.$

Note that the distribution is close to symmetric around its peak value.

February 16, 2009

11/1

February 16, 2009

Binomial Random Variables

Binomial distribution

Statistics for a Binomial random variables with n = 50 and varying p.

р	$\mu = E[B]$	Var(B)	$\sigma = SD(B)$	$\mathbf{P}\left\{\mu-\sigma\leq \mathbf{B}\leq\mu+\sigma\right\}$
0.1	5	4.5	2.12	0.766
0.25	12.5	9.375	3.06	0.745
0.5	25	12.5	3.5	0.678
0.75	37.5	9.375	3.06	0.738
0.9	45	4.5	2.12	0.766

Math 425 Introduction to Probability Lecture

Binomial distribution

Example. Acree Widgets sells their widgets in packs of 5 and guarantees that no more than one widget is defective. If a widget is defective with probability p = 0.1 what is the probability that a pack will be returned?

Solution. Let *B* be the binomial random variable counting defective widgets in a pack of 5. Then,

$$\begin{aligned} I - \mathbf{P} \{ B \le 1 \} &= 1 - \mathbf{P} \{ B = 0 \} - \mathbf{P} \{ B = 1 \} \\ &= 1 - {5 \choose 0} (0.9)^5 - {5 \choose 1} (0.1) (0.9)^4 \\ &\approx 0.081. \end{aligned}$$

Means of Discrete Random Variables

Discrete Random Variable

Kenneth Harris (Math 425)

A random variable X is discrete if there is an enumeration of all possible values X can take: $y_1, y_2, y_3, ...$, so that whenever $\mathbf{P} \{X = y\} > 0$ there is some *i* with $y = y_i$.

We want to define the expected value of a discrete random variable as

$$E[X] = \sum_{i} y_i \cdot \mathbf{P} \{ X = y_i \},$$

where y_1, y_2, \ldots lists the possible values X can take.

Warning: We need to make sure this makes sense for infinite discrete random variables!!

Kenneth Harris (Math 425)

Math 425 Introduction to Probability Lecture

February 16, 2009 16 / 1

Discrete Random Variable

Means of Discrete Random Variables

¹²⁷ If *X* takes only finitely many possible values y_1, y_2, \ldots, y_n , then

$$E[X] = \sum_{i} y_i \cdot \mathbf{P} \{ X = y_i \}$$

always is well defined.

 \mathbb{F} If X can take infinitely many possible values y_1, y_2, \ldots , then

$$E[X] = \sum_{i} y_i \cdot \mathbf{P} \{ X = y_i \}$$

may not be well defined because either (i) it does not converge or (ii) its value depends on the order of the summation.

February 16, 2009

Means of Discrete Random Variables

Discrete Random Variable

Example. Let X be the random variable with the following probability mass function:

$$p_X(n)=rac{c}{n^2}$$
 where $c=rac{6}{\pi^2}$ and $n\geq 1$,

so that

$$\sum_{n} p_X(n) = c \sum_{n} \frac{1}{n^2} = c \cdot \frac{\pi^2}{6} = 1.$$

However,

$$E[X] = \sum_{n} n \cdot p_X(n) = c \sum_{n} \frac{1}{n} = \infty$$

Math 425 Introduction to Probability Lecture 1

The sum is the harmonic series, which diverges.

Discrete Random Variable

Example. Let *X* be the random variable with the following probability mass function:

$$p_X((-1)^{n+1}n)=rac{c}{n^2}$$
 where $c=rac{6}{\pi^2}$ and $n\geq 1$

So.

$$E[X] = \sum_{n} (-1)^{n+1} n \cdot p_X(n) = c \sum_{n} \frac{(-1)^{n+1}}{n} = c \ln 2$$

The problem is that this series is only conditionally convergent, and what it converges to depends upon the order of the summation:

	1 – 1 +	$\frac{1}{2}$ $\frac{1}{3}$	$+\frac{1}{3}-\frac{1}{2}+$	$-\frac{1}{4}$ $-\frac{1}{5}$	$+\frac{1}{5}$ - $+\frac{1}{7}$ - $+\frac{1}{7}$ -	$-\frac{1}{6}$ $-\frac{1}{4}$	+ +	< 2	5 6 5 6		
th Harris (Math	425)	N	lath 425	Introdu	ction to F	robabili	ity Lecture	1		February 16, 2009	

Means of Discrete Random Variables

Discrete Random Variable

Kenneth Harris (Math 425)

Definition

Let X be a discrete random variable which takes possible values y_1, y_2, \ldots and has probability mass function p_X .

The expected value (or mean) of X is defined by

$$E[X] = \sum_{i} y_i \cdot p_X(y_i)$$

provided this sum converges absolutely:

$$\sum_{i} |y_i| \cdot p_X(y_i) \text{ converges.}$$

Geometric Random Variable

Kenneth Harris (Math 425)

Consider a Bernoulli trials process, with probability of success p and failure q = 1 - p, which we continue until the first success.

Let T be the number of trials up to and including the first success. Then

P {
$$T = n$$
} = $q^{n-1}p$ when $n \ge 1$

Since the events $\{T = n\}$ are mutually exclusive

Geometric Random Variable

$$\mathbf{P}\{T \ge 1\} = \sum_{n=0}^{\infty} q^n p = \frac{p}{1-q} = \frac{p}{p} = 1,$$

and so

$$\mathbf{P}\{T=0\} = 1 - \mathbf{P}\{T \ge 1\} = 1 - 1 = 0$$

 $\{T = 0\}$ when all trials result in failure.

February 16, 2009

20 / 1

Geometric Random Variable

Geometric Random Variable

Geometric Random Variable

Geometric distributions

Solutions for geometric random variables with p = 0.2, 0.5.

Definition

Let 0 and <math>q = 1 - p. We say a random variable *T* is a geometric random variable (with parameter *p*) if

$$\mathbf{P}\{X=n\}=q^{n-1}p$$
 $n=1,2,3,...$

A random variable which counts the number of trials until the first success in a Bernoulli trials process is a geometric random variable.

Note that the most probable value is $\{T = 1\}$, and the values decrease rapidly as *n* increases.

Geometric Random Variable

Mean and Variance

 \mathbb{W} The mean of a geometric random variable T with parameter p is

$$E[T] = \sum_{n=1}^{\infty} n \cdot (1-p)^{n-1} p,$$

which converges absolutely.

Theorem

Let T be a geometric random variable with parameter p, where 0 . The mean and variance of T are

$$E[T] = \frac{1}{p}$$
$$Var(T) = \frac{1-p}{p^2}$$

Values for some distributions

Geometric Random Variable

 $\sigma = SD(T)$ $\mathbf{P}\left\{\mu-\sigma\leq T\leq\mu+\sigma\right\}$ $\mu = E[T]$ Var(T)р $\frac{1}{6}$ 5.477 6 30 0.865 $\frac{1}{4}$ 3.464 12 0.867 4 $\frac{1}{3}$ 3 6 2.45 0.868 $\frac{1}{2}$ 2 2 1.414 0.875 2 3 1.5 0.75 0.866 0.889 $\frac{3}{4}$ 0.667 0.9375 1.33 0.444

Geometric Random Variable

Examples

Example. A lottery chooses a number between 1 and 100 at random each week. What is the expected number of weeks between successive draws of the number 50?

Solution Let *T* be the geometric random variable which counts the weeks between successive draws of 50.

Since p = 0.01, the expected number of weeks is

$$E[T] = \frac{1}{p} = 100.$$

Kenneth Harris (Math 425)

Math 425 Introduction to Probability Lecture February 16, 2009

Negative Binomial Random Variables

Negative Binomial Random Variable

Definition

Let 0 and <math>q = 1 - p and k > 0. We say a random variable X is a negative binomial random variable (with parameters p and k) if

$$\mathbf{P} \{X = n\} = \binom{n-1}{k-1} p^k q^{n-k} \qquad n = k, k+1, k+2, \dots$$

A random variable which counts the number of trials until the kth success in a Bernoulli trials process is a negative random variable. When k = 1, this is the same as a geometric random variable.

Negative Binomial Random Variable

Consider a Bernoulli trials process, with probability of success p and failure q = 1 - p, which we continue until k successes (where k > 0).

Let X_k be the number of trials up to and including the k success. For $n \ge k$, $X_k = n$ exactly when there are k - 1 successes in the first n-1 trials, and the last trial is a success.

There are

$$\binom{n-1}{k-1}$$

such sequences of length *n* and each has the same probability

$$p^k q^{n-k}$$

Therefore

$$\mathbf{P} \{X_k = n\} = \binom{n-1}{k-1} p^k q^{n-k} \qquad n = k, k+1, k+2, \dots$$

Kenneth Harris (Math 425)

lath 425 Introduction to Probability Lecture

February 16, 2009 31/1

Negative Binomial Random Variables

Negative Binomial distribution

Point Distribution for negative binomial random variables with $p = \frac{1}{3}$ and k = 10.

Negative Binomial Random Variables

Negative Binomial distribution

Distribution for negative binomial random variables with p = 0.3, 0.5 and k = 10.

Negative Binomial Random Variables

Mean and Variance

The mean of a negative random variable X with parameters p and k is

$$E[X] = \sum_{n=k}^{\infty} n \cdot \binom{n}{k} p^k (1-p)^{n-k},$$

which converges absolutely.

Theorem

Let X be a negative binomial random variable with parameters p, where 0 and <math>k > 0. The mean and variance of X are

$$E[X] = \frac{k}{p}$$
$$Var(X) = \frac{k(1-p)}{p^2}$$

Kenneth Harris (Math 425)

Math 425 Introduction to Probability Lecture 1

February 16, 2009 35 / 1

Negative Binomial Random Variables

Values for some distributions

Solution Way and the set of the

р	$\mu = E[X]$	Var(X)	$\sigma = SD(X)$	$\mathbf{P}\left\{\mu-\sigma\leq X\leq\mu+\sigma\right\}$
<u>1</u> 6	12	60	7.75	0.796
$\frac{1}{4}$	8	24	4.9	0.958
<u>1</u> 3	6	12	3.46	0.941
<u>1</u> 2	4	4	2	0.891
<u>2</u> 3	3	1.5	1.225	0.889
<u>3</u> 4	2.66	0.889	0.942	0.844

Example

Example. What is the probability of *k* successes before ℓ failures in a Bernoulli trials process with probability *p*?

Solution. If *k* successes comes before ℓ failures, then the *k* success must occur on some trial *n* with $k \le n < k + \ell$.

Let *X* count the number of trials before the *k*th success. Then

$$\mathbf{P}\{k \le X < k+\ell\} = \sum_{n=k}^{k+\ell-1} \binom{n-1}{k-1} p^k (1-p)^{n-k}.$$