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Infinite Discrete Sample Spaces

Examples of infinite sample spaces

�We have been considering finite sample spaces, but some
experiments are best modeled by infinite sample spaces.

Experiment A: Toss a fair coin until the first head appears, then
stop.
Experiment C: Toss a fair coin until a run of ten heads in a row
appears, then stop.
Experiment B: Throw a pair of dice until either a 5 or 7 appears,
then stop.

� No finite sample space is adequate in these cases, since each
experiment has (potentially) infinitely many outcomes.

Kenneth Harris (Math 425) Math 425 Introduction to Probability Lecture 12 February 4, 2009 3 / 1

Infinite Discrete Sample Spaces

Example of coin tosses

Example A. Toss a fair coin until the first head appears, then stop.
The sample space for this experiment is

S =
{

H, TH, ,TTH ,TTTH , . . . ,T∞ = TTT · · ·
}

For each k , a sequence of k tails followed by a single head: T kH.
an infinite sequence consisting only tails: T∞.

�We can compute the probability of “most" of these outcomes:

P (T kH) = 2−k−1

P (T∞) = ???
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Infinite Discrete Sample Spaces

Axiom 3 – Strong form

�We recall the strong form of the Addition Rule (Axiom 3):

Axiom (3 – Addition rule (strong form))

For any sequence of mutually exclusive events E1,E2, . . . (so,
Ei ∩ Ej = ∅ whenever i 6= j ),

P (
∞⋃

k=1

Ek ) =
∞∑

k=1

P (Ek ).
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Infinite Discrete Sample Spaces

Example of Coin Tosses

S =
{

H, TH, ,TTH ,TTTH , . . . ,T∞ = TTT · · ·
}

� Let H be the event that a heads is tossed. Then

Hc = {T∞} P (T∞) = P (Hc) = 1− P (H)

� Let Hk = {T kH} (k ≥ 0): the event that heads follows k tails.
So, the events H0,H1,H2, . . . , are mutually exclusive and

H =
∞⋃

k=0

Hk
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Infinite Discrete Sample Spaces

Example – continued
� Then,

P (Hk ) = P (T k H) = 2−k−1.

Use the strong form of the Addition Rule:

P
( ∞⋃

k=0

Hk
)

=
∞∑

k=0

P (Hk )

=
∞∑

k=0

2−k−1 = 1.

We compute the infinite series shortly.
� So,

P
(
H
)

= P
( ∞⋃

k=0

Hk
)

= 1

and thus,
P
(
Hc) = P

(
T∞

)
= 0.
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The Geometric Series

Infinite series

Definition
Let a1,a2, . . . be an infinite sequence of real numbers.
If the partial sums

sn =
n∑

k=1

ak .

have a finite limit:
lim

n→∞
sn = s,

then we say the infinite series
∑∞

k=1 ak converges with sum s.
Otherwise, it diverges.

If the series
∑∞

k=1 |ak | converges as well,
then

∑∞
k=1 ak converges absolutely.

Kenneth Harris (Math 425) Math 425 Introduction to Probability Lecture 12 February 4, 2009 9 / 1

The Geometric Series

Geometric series

Theorem
The geometric series converges absolutely:

∞∑
k=0

axk =
a

1− x
for any real numbers a, and |x | < 1.

Example. From the previous section:

∞∑
k=0

2−k−1 =
∞∑

k=0

1
2
·
(1

2
)k

=
1
2
· 1

1− 1
2

= 1.

a = 1
2 and x = 1

2 from the Theorem.
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The Geometric Series

Proof

Proof . The nth partial sum is

sn =
n∑

k=0

axk .

Multiply by x (shifting powers by 1):

x · sn =
n+1∑
k=1

axk .

Subtract the previous two results (most terms cancel)

sn − x · sn = a− axk+1.

Solve for sn,

sn =
a(1− xn+1)

1− x
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The Geometric Series

Proof

� By definition

∞∑
k=0

axk = lim
n→∞

sn = lim
n→∞

a(1− xn+1)

1− x
.

Since |x | < 1,
lim

k→∞
xk = 0,

so
∞∑

k=0

axk = lim
n→∞

a(1− xn+1)

1− x
=

a
1− x

.
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Monkey at the Typewriter: Bernoulli Trials

The monkey and the bard

Example
A monkey is sitting at a typewriter and randomly hits keys in a
never-ending sequence. What is the probability the monkey eventually
types the complete works of Shakespeare?

� A real monkey will eventually tire of pecking at a typewriter and go
searching for a banana.

� However, this problem is really about a probability model, not a real
monkey.
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Monkey at the Typewriter: Bernoulli Trials

Bernoulli Trials

Definition
By a sequence of Bernoulli trials, we mean a sequence of trials
(repetitions of an experiment) satisfying the following

1 Only two possible mutually exclusive outcomes on each trial.
One arbitrarily called success and the other failure.

2 The probability of success on each trial is the same for each trial.
3 The trials are independent.
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Monkey at the Typewriter: Bernoulli Trials

Examples of Bernoulli Trials

Examples. The following are examples of Bernoulli trials:
Flip a coin (heads, tails),
Each computer chip in a production line tested (chip passes test,
fails test),
Rolling a pair of dice for “snake-eyes" (double ones, any other
value),
A patient is prescribed a drug treatment (cured, not cured).
A monkey types the complete works of Shakespeare (success,
failure).
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Monkey at the Typewriter: Bernoulli Trials

Sample space

� A typical experiment involving a sequence of Bernoulli trials is as
follows.

Example. Suppose you are willing to wait indefinitely for the first
success in a sequence of Bernoulli trials. What is the sample space of
such an experiment?

� Let s be success, f be failure. Then the sample space S consists of

(s)

(f , f , . . . , f , s) only success is last trial
(f , f , f . . .) infinite sequence of failures .
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Monkey at the Typewriter: Bernoulli Trials

Waiting for success

Problem. Suppose the probability of success is p and failure is 1− p
for a sequence of Bernoulli trials.

What is the probability of each outcome?

Solution. Let Ek be the event that the first success is on the k + 1st
trial. The finite outcomes, success on the k + 1st trial, are

Ek = {(f , f , . . . , f , s)} k failures f , first success s

Since the trials are independent

P (Ek ) = p(1− p)k .
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Monkey at the Typewriter: Bernoulli Trials

Waiting for success
� Let E be the event that there is eventually some success. So,

E =
∞⋃

k=0

Ek .

The event of no success is Ec = {(f , f , f , . . .)}.
� Since the events E0,E1, . . . are mutually exclusive,

P (E) = P
( ∞⋃

k=0

Ek
)

=
∞∑

k=0

P (Ek )

=
∞∑

k=0

p(1− p)k

=
p

1− (1− p)
= 1

So,
P (Ec) = 1− P (E) = 0.
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Monkey at the Typewriter: Bernoulli Trials

Back to the Monkey

� The complete works of Shakespeare consists of L symbols (spaces,
letters, punctuation, etc.). A monkey beating on the keys at random
has exceeding small, but nonzero probability p of typing a sequence of
L symbols which is exactly the complete works of Shakespeare.

� Let each trial consist of L symbols banged-out by the Monkey.
Success in a trial occurs when the monkey has typed the complete
works of Shakespeare in the trial. The probability of eventually
succeeding is one, since the only other outcome, the infinite sequence
of failures, (f , f , f , . . .), has probability zero.
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Craps

Craps

Example
Craps is played with a pair of dice. The player (or “shooter") rolls once:

If 7 or 11 show, she wins,
if 2, 3 or 12 shows she loses,
and if any other number shows (the “gambler’s point"), she must
keep rolling the dice until she gets a 7 before her point appears
(she loses), or her point appears before the 7 (she wins).

What is the probability of winning at craps?
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Craps

Sample space

� The sample space S consists of the following sequences:

(7), (11), (2), (3), (12)

(d ,a2,a3, . . . ,an,d) where d 6= 7 and ai 6= d ,7
(d ,a2,a3, . . . ,an,7) where d 6= 7 and ai 6= d ,7
(d ,a2,a3, . . .) where d 6= 7 and ai 6= d ,7

� Let Ed be the event that the first throw is d and the gambler
eventually wins. Let Ed ,n be the event that the first roll is d and the
gambler wins on the nth throw. (So, d = 4,5,6,8,9,10).
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Craps

Computing the odds
� Let d = 4. The probability that the gambler rolls 4 and wins on the
nth throw, the outcome (4,a2,a3, . . . ,an−1,4):

P (E4,n) = (
3
36

)2 · (27
36

)n−2

� The probability that the gambler wins some time (when she threw a
4 on the first toss):

P (E4) = P (
∞⋃

n=2

E4,n) = (
3
36

)2 ·
∞∑

k=0

(
27
36

)k .

This is a geometric series,

P (E4) = (
3
36

)2 ·
∞∑

k=0

(
27
36

)k

= (
3
36

)2 · 1
1− 2

3

=
1

38
.
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Craps

Computing the odds

� The probability of rolling a 4 or 10 are 3
36 , so

P (E4) = P (E10) = (
3

36
)2 ·

∞∑
k=0

(
27
36

)k =
1

38

� The probability of rolling a 5 or 9 are 4
36 , so

P (E5) = P (E9) = (
4

36
)2 ·

∞∑
k=0

(
26
36

)k =
2
45

� The probability of rolling a 6 or 8 are 5
36 , so

P (E6) = P (E8) = (
5
36

)2 ·
∞∑

k=0

(
25
36

)k =
25

396
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Craps

Computing the odds

� The probability of winning at black jack is

8
36

+ 2 · 1
38

+ 2 · 2
45

+ 2 · 25
396

≈ 0.4783

The probability of throwing a 7 or 11 on the first throw is 8
36 .
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Variation on a Theme

Example

� The ideas of independence and conditioning are remarkably
effective at working together to provide neat solutions to a wide range
of problems.

Example
A coin shows a head with probability p, or a tail with probability 1− p.
It is flipped repeatedly until the first head appears.

What is the probability that a heads appears on an even number
of tosses?
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Variation on a Theme

Example – continued

� Let E be the event of heads eventually appearing on an even toss.
By the partition rule, conditioning on the outcome of the first toss

(H or T ):

P (E) = P(E |H) · P (H) + P(E |T ) · P (T )

= 0 · p + P(E |T ) · (1− p),

since 1 is odd, P(E |H) = 0.

�What about P(E |T )? The key is that we now need an odd number
of tosses to succeed.
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Variation on a Theme

Example – continued

� Let O be the event that the first head is on odd throw, and N be that
no head is tossed.

P (Ec) = P (O) + P (N) = P (O) + 0 = P (O).

But,
P (O) = P(E |T ),

so
P(E |T ) = 1− P (E).

� Thus,

P (E) = P(E |T ) · (1− p) = (1− P (E)) · (1− p)
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Variation on a Theme

Example – continued

P (E) = (1− P (E)) · (1− p)

� Let q = 1− p, and solve for P (E):

P (E) = (1− P (E)) · q

P (E) =
q

1 + q
=

1− p
1 + (1− p)

=
1− p
2− p

.
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Variation on a Theme

Example – continued

P (E) =
1− p
2− p

.

Consider a fair coin (p = 1
2 ).

The probability of tossing heads on an even throw is

P (E) =
1
3

The probability of tossing heads on an odd throw is

P (O) = 1− 1
3

=
2
3

Does this seem right?
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Variation on a Theme

Example – Method 2

Method 2. Let En (n ≥ 0) be the event that heads first appears on the
2nth toss. Let q = 1− p.

P (En) = pq2n−1 = pq
(
q2)n

Since the events E1,E2, . . . are mutually exclusive,

P (E) =
∞∑

n=0

P (En)

=
∞∑

n=0

pq
(
q2)n

=
pq

1− q2 =
p(1− p)

1− (1− p)2

=
1− p
2− p
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A problem of Huygens

Example: Huygen’s problem

Example
Two players, A and B, take turns at throwing dice; each needs some
score to win. If one player does not throw the required score, the play
continues with the next person throwing. At each of their attempts A
wins with probability α and B wins with probability β.
(a) What is the probability that A wins if A throws first?
(b) What is the probability that A wins if A throws second?
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A problem of Huygens

Solution to Huygen’s problem

� Let
p1 be the probability A wins when A has the first throw, and
p2 be the probability A wins when B has the first throw.

By conditioning on the outcome of the first throw, when A is first,

p1 = α+ (1− α)p2.

When B is first, conditioning on the first throw gives

p2 = (1− β)p1.

(If B throws their score, A loses.)
� Solving this pair gives

p1 =
α

α+ β − αβ

p2 =
(1− β)α

α+ β − αβ
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A problem of Huygens

Example

� Suppose A and B are tossing a fair coin, and each needs a head. A
throws first. (Here, α = β = 1

2 ).
The probability that A wins is

p1 =
1
2

1
2 + 1

2 −
1
4

=
2
3

The problem is equivalent to tossing a heads on an odd throw.

The probability that B wins is

p2 =
1
2
· p1 =

1
3

The problem is equivalent to tossing a heads on an even throw.
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A problem of Huygens

Example

� Suppose A and B are throwing a pair of dice. A needs a 5 and B a
7. (Here, α = 1

12 and β = 1
6 ).

The probability that A wins if A throws first is

p1 =
1
9

1
6 + 1

9 −
1

54

=
3
7
≈ 0.43

The probability that A wins if A throws second is

p2 =
5
6
· p1 =

15
42
≈ 0.36
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